The Geometry of Discrete Decomposable Models Danai Deligeorgaki

We study discrete decomposable models, a family of statistical models that lie in the class of hierarchical models. Decomposable models and their corresponding graphs are of wide use throughout statistics and data science. For instance, directed acyclic graphs (DAGs) can be approximated by decomposable graphs. The complexity of this approximation determines the complexity of probabilistic inference algorithms for DAG models such as variable elimination. Therefore, the combinatorics of the graphs defining the decomposable models carry important information in regard to probabilistic inference. The goal of this project is to explore at a deeper level the information encoded in combinatorial objects associated to decomposable models.

Definition

A decomposable simplicial complex Γ is a collection of simplices, i.e. nodes, edges, triangles, tetrahedra, etc., that are glued together (in a certain way). The simplices in Γ are called faces and the (non-trivial) inclusionmaximal faces are called facets.
For example, the graph on the right denotes a decomposable simplicial complex on 9 nodes. The edge $\{1,2\}$, the triangle $\{2,3,4\}$ and the node $\{7\}$ are some of its facets.
decomposable simplicial complex

Discrete decomposable models
Let $r_{1}, \ldots, r_{m} \in \mathbb{N}$ be the number outcomes of the discrete variables $X_{1}, X_{2}, \ldots, X_{m}$, respectively, and let $R=r_{1} \times \cdots \times r_{m}$ be the set of $X_{1}, \lambda_{2}, \ldots, \lambda_{m}$, respectively, and let $R=r_{1} \times \ldots \times r_{m}$ be the set of
all possible outcomes. The joint distribution of X_{1}, \ldots, X_{m} lies in the ($\# \mathcal{R}-1$)-dimensional probability simplex

$$
\Delta_{\# \mathbb{R}-1}=\left\{p \in \mathbb{R}^{\# \mathbb{R}}: p_{i} \geq 0 \text {, for all } i \in \mathcal{R} \text { and } \sum_{i \in \mathbb{R}} p_{i}=1\right\} .
$$

The decomposable model associated with a decomposable simplicial complex Γ is

$$
M_{\Gamma}=\left\{p \in \Delta_{\# R-1}: p_{i}=\frac{1}{Z(\theta)} \prod_{p \in \text { facet }(\Gamma)} \theta_{i F}^{(F)} \text { for all } i \in R\right\},
$$

for $\theta_{i_{p}}^{(F)}$ positive parameters and $Z(\theta)$ normalizing constant.

From the model to the polytope

Apart from the graph Γ, there are other combinatorial objects linked to a decomposable model M_{Γ}. In fact, M_{Γ} can be written as the intersection of a toric variety $V_{M_{\mathrm{F}}}$ with the probability simplex $\Delta_{\# \pi-1}$.

$$
\begin{aligned}
& \text { For example, for } \# R=3 \text {, } \\
& \qquad M_{\Gamma}=V_{M_{\mathrm{r}}} \cap \Delta_{2}
\end{aligned}
$$

From the toric variety, which is an algebro-geometric object, we can pass to a polytope $P_{M r_{r}}$, a geometric object. It is a property of toric varietie that the geometric properties of $V_{M \mathrm{r}}$ are encoded in the polytope $P_{M_{\mathrm{r}}}$

$P_{M_{r}}$
In this project, we are investigating the structure of this polytope to see if it carries useful information in relation to probabilistic inference.

References

Getting to know the polytope
When investigating a polytope's combinatorics, there are several questions
to be explored, such as

- What are the facets of the polytope $P_{M_{\mathrm{r}}}$? Answered in [1].

The facets are given by $x_{i v}^{F} \geq 0$ for $F \in$ facets (Γ) and $i_{p} \in \mathcal{R}_{p}$.

- Does $P_{M_{\mathrm{r}}}$ admit a regular unimodular triangulation? Answered in [2].

> Yes!

What combinatorial information does this triangulation carry? Open.

- What are the enumerative properties of $P_{M_{r}}$? Our results

To this end, we study the structure of an integer polynomial associated to $P_{M_{\mathrm{r}}}$, called the h^{*}-polynomial

$$
h^{*}(x)=h_{0}^{*}+h_{1}^{*} x+\cdots+h_{\# R-1}^{*} x^{\# R-1} .
$$

This polynomial captures important information about the polytope, including its volume and whether or not the polytope $P_{\mathrm{Mf}_{\mathrm{r}}}$, and hence the model M_{Γ}, has the Gorenstein property. In fact, the decomposable model M_{Γ} is Gorenstein if and only if $h^{*}(x)$ is palindromic.
We characterize all Gorenstein discrete decomposable binary models for forests Γ.

Let I be a forest on m nodes and
$X_{1}, \ldots, \lambda_{m}$ be binary variables.
Then M_{Γ} is Gorenstein if and only if all connected components of Γ have

- exactly one vertex,
- strictly more than one vertex

Future work

We will continue exploring the combinatorial properties of discrete decomposable models, and their interpretation in terms of statistics. Our current goals are to

1. Interpret the observations in Theorem 1 statistically
2. Generalize Theorem 1 to characterize all discrete decomposable models. We already have a conjecture in this direction.
3. Analyze the information that the triangulation constructed in [2] carries

Decomposable Simplicial Complexes

Decomposable Models

From the Model to the Polytope

The Polytope

Outline: Discrete Decomposable Models

Discrete Decomposable Models are defined through some fine geometric/combinatorial objects called simplices. They provide a way to do probabilistic inference, i.e. to compute the probability $P\left(X_{i_{1}}, X_{i_{2}}, \ldots, X_{i_{k}}\right)$, given $P\left(X_{1}, X_{2}, \ldots, X_{m}\right)$ for discrete variables $X_{1}, X_{2}, \ldots, X_{m}$.

First, we will discuss
\diamond simplices,
\diamond simplicial complexes,
\diamond decomposable simplicial complexes.

Simplex

A (geometric) simplex of dimension d can be thought of as a d-dimensional generalisation of a triangle: $d+1$ vertices, all connected to each other, forming a d-dimensional object.

Simplex

A (geometric) simplex of dimension d can be thought of as a d-dimensional generalisation of a triangle: $d+1$ vertices, all connected to each other, forming a d-dimensional object.

A simplex contains simplices of smaller dimension. We call faces of a simplex: all simplices it contains and the empty set, facets of a simplex of dimension d : all faces of dimension $d-1$.

Simplicial Complex

A simplicial complex is a collection of simplices that may be glued together.
The simplices glued together should intersect in smaller simplices.

Figures taken from Wikipedia

Simplicial Complex

Given a simplicial complex Γ we call
faces of Γ : all simplices it contains and the empty set, facets of Γ : all inclusion-wise maximal simplices it contains.

Example

Decomposable Simplicial Complexes

We are interested in simplicial complexes with even finer combinatorial/geometric properties.
Such examples are decomposable simplicial complexes.

Decomposable Simplicial Complexes

We are interested in simplicial complexes with even finer combinatorial/geometric properties. Such examples are decomposable simplicial complexes. I think of decomposable simplicial complexes as simplicial complexes that intersect at a simplex and you can 'break' into two repeatedly and end up with the facets of the simplicial complex (see below).

Decomposable Simplicial Complexes

We are interested in simplicial complexes with even finer combinatorial/geometric properties.
Such examples are decomposable simplicial complexes.
I think of decomposable simplicial complexes as simplicial complexes that intersect at a simplex and you can 'break' into two repeatedly and end up with the facets of the simplicial complex (see below).

Counterexample:

\diamond We will see how to construct statistical models starting with a decomposable simplicial complex.
\diamond These models have nice combinatorial properties that allow us to apply probabilistic efficient inference techniques such as variable elimination.

Probability simplex

Let X_{1}, \ldots, X_{m} be discrete random variables.
Let $r_{1}, \ldots, r_{m} \in \mathbb{N}$ be the number outcomes of $X_{1}, X_{2}, \ldots, X_{m}$, and let $\mathcal{R}=r_{1} \times \cdots \times r_{m}$ be the set of all possible outcomes.
The joint distribution of X_{1}, \ldots, X_{m} lies in the ($\# \mathcal{R}-1$)-dimensional probability simplex

$$
\Delta_{\# \mathcal{R}-1}=\left\{p \in \mathbb{R}^{\# \mathcal{R}}: p_{i} \geq 0, \text { for all } i \in \mathcal{R} \text { and } \sum_{i \in \mathcal{R}} p_{i}=1\right\}
$$

for some choice of r_{1}, \ldots, r_{m}.

Probability simplex

Let X_{1}, \ldots, X_{m} be discrete random variables.
Let $r_{1}, \ldots, r_{m} \in \mathbb{N}$ be the number outcomes of $X_{1}, X_{2}, \ldots, X_{m}$, and let $\mathcal{R}=r_{1} \times \cdots \times r_{m}$ be the set of all possible outcomes.
The joint distribution of X_{1}, \ldots, X_{m} lies in the ($\# \mathcal{R}-1$)-dimensional probability simplex

$$
\Delta_{\# \mathcal{R}-1}=\left\{p \in \mathbb{R}^{\# \mathcal{R}}: p_{i} \geq 0, \text { for all } i \in \mathcal{R} \text { and } \sum_{i \in \mathcal{R}} p_{i}=1\right\}
$$

A (discrete) statistical model M is a subset of $\Delta_{\# \mathcal{R}-1}$ for some choice of r_{1}, \ldots, r_{m}.

Example: Independence Model

Consider variables X_{1}, X_{2} such that $r_{1}=r_{2}=2$ (binary). There are 4 possible outcomes: $\{00,01,10,11\}$.
Their joint probability distribution p satisfies

$$
p_{00}, p_{01}, p_{10}, p_{11} \geq 0
$$

and

$$
p_{00}+p_{01}+p_{10}+p_{11}=1
$$

We can think of the points $\left(p_{00}, p_{01}, p_{10}, p_{11}\right)$ as a 3-dimensional probability simplex.

Example: Independence Model

Consider variables X_{1}, X_{2} such that $r_{1}=r_{2}=2$ (binary).
There are 4 possible outcomes: $\{00,01,10,11\}$.
Their joint probability distribution p satisfies

$$
p_{00}, p_{01}, p_{10}, p_{11} \geq 0
$$

and

$$
p_{00}+p_{01}+p_{10}+p_{11}=1
$$

We can think of the points $\left(p_{00}, p_{01}, p_{10}, p_{11}\right)$ as a 3-dimensional probability simplex.

A statistical model is a part of this simplex. It represents a set of candidates for the unknown distribution p.

We will talk about a family of statistical models that can be described in a nice geometric way:
as intersections of simplices with toric varieties.

Discrete Decomposable Models

Let $r_{1}, \ldots, r_{m} \in N$ be the number of outcomes of the discrete variables $X_{1}, X_{2}, \ldots, X_{m}$, respectively, and let $\mathcal{R}=r_{1} \times \cdots \times r_{m}$ be the set of all possible outcomes.
Let 「 be a decomposable simplicial complex with m vertices.
The decomposable model M_{Γ} associated with Γ is

$$
M_{\Gamma}=\left\{p \in \Delta_{\# \mathcal{R}-1}: p_{i}=\frac{1}{Z(\theta)} \prod_{F \in \operatorname{facet}(\Gamma)} \theta_{i_{F}}^{(F)} \text { for all } i \in \mathcal{R}\right\}
$$

for $\theta_{i_{F}}^{(F)}$ positive parameters and $Z(\theta)$ normalizing constant.

Discrete Decomposable Models

Let $r_{1}, \ldots, r_{m} \in N$ be the number of outcomes of the discrete variables $X_{1}, X_{2}, \ldots, X_{m}$, respectively, and let $\mathcal{R}=r_{1} \times \cdots \times r_{m}$ be the set of all possible outcomes.
Let Γ be a decomposable simplicial complex with m vertices.
The decomposable model M_{Γ} associated with Γ is

$$
M_{\Gamma}=\left\{p \in \Delta_{\# \mathcal{R}-1}: p_{i}=\frac{1}{Z(\theta)} \prod_{F \in \operatorname{facet}(\Gamma)} \theta_{i_{F}}^{(F)} \text { for all } i \in \mathcal{R}\right\}
$$

for $\theta_{i_{F}}^{(F)}$ positive parameters and $Z(\theta)$ normalizing constant.

Example: Independence Model

Consider variables X_{1}, X_{2} such that $r_{1}=r_{2}=2$ (binary). Let Γ be a simplicial complex consisting of 2 vertices.

Example: Independence Model

Consider variables X_{1}, X_{2} such that $r_{1}=r_{2}=2$ (binary). Let Γ be a simplicial complex consisting of 2 vertices.

The decomposable model M_{Γ} associated with Γ is

$$
\begin{gathered}
M_{\Gamma}=\left\{p=\left(p_{00}, p_{01}, p_{10}, p_{11}\right) \in \Delta_{3}:\right. \\
\left.p_{i_{1} i_{2}}=\frac{\theta_{i_{1}}^{(1)} \theta_{i_{2}}^{(2)}}{\theta_{0}^{(1)} \theta_{0}^{(2)}+\theta_{0}^{(1)} \theta_{1}^{(2)}+\theta_{1}^{(1)} \theta_{0}^{(2)}+\theta_{1}^{(1)} \theta_{1}^{(2)}}, i_{1} i_{2} \in\{00,01,10,11\}\right\}, \\
\text { where } \theta_{0}^{(1)}, \theta_{1}^{(1)}, \theta_{0}^{(2)}, \theta_{1}^{(2)} \text { are positive parameters. }
\end{gathered}
$$

Example: Independence Model

Consider variables X_{1}, X_{2} such that $r_{1}=r_{2}=2$ (binary). Let Γ be a simplicial complex consisting of 2 vertices.

The decomposable model M_{Γ} associated with Γ is

$$
\begin{gathered}
M_{\Gamma}=\left\{p=\left(p_{00}, p_{01}, p_{10}, p_{11}\right) \in \Delta_{3}:\right. \\
\left.p_{i_{1} i_{2}}=\frac{\theta_{i_{1}}^{(1)} \theta_{i_{2}}^{(2)}}{\theta_{0}^{(1)} \theta_{0}^{(2)}+\theta_{0}^{(1)} \theta_{1}^{(2)}+\theta_{1}^{(1)} \theta_{0}^{(2)}+\theta_{1}^{(1)} \theta_{1}^{(2)}}, i_{1} i_{2} \in\{00,01,10,11\}\right\}, \\
\text { where } \theta_{0}^{(1)}, \theta_{1}^{(1)}, \theta_{0}^{(2)}, \theta_{1}^{(2)} \text { are positive parameters. }
\end{gathered}
$$

It turns out that M_{Γ} contains all positive distributions for which X_{1}, X_{2} are independent.

Outline: From the Model to the Polytope

We discussed how graphs are associated to discrete decomposable models. We will briefly introduce other objects that relate to decomposable models:
\diamond varieties
\diamond polytopes

Varieties

\diamond Algebraic varieties are algebro-geometric objects.
\diamond You can think of an algebraic variety as the set of solutions of a system of polynomial equations over the real (or complex) numbers.
\diamond For example, the unit circle is the set of real pairs (x, y) such that $x^{2}+y^{2}-1=0$.

Figure taken from 'javaTpoint'

From the Model to the Variety

Every decomposable model M_{Γ} can be written as the intersection of a (toric) variety $V_{M_{\Gamma}}$ with the probability simplex $\Delta_{\# \mathcal{R}-1}$,

$$
M_{\Gamma}=V_{M_{\Gamma}} \cap \Delta_{\# \mathcal{R}-1}
$$

Example: Independence Model

\diamond Let X_{1}, X_{2} be two binary variables.
Let M_{Γ} be the model containing all possible joint distributions $p=\left(p_{00}, p_{01}, p_{10}, p_{11}\right)$ for which X_{1}, X_{2} are independent.

Example: Independence Model

\diamond Let X_{1}, X_{2} be two binary variables.
Let M_{Γ} be the model containing all possible joint distributions $p=\left(p_{00}, p_{01}, p_{10}, p_{11}\right)$ for which X_{1}, X_{2} are independent.
\diamond As already discussed, all distributions p lie in Δ_{3}, i.e. they satisfy $p_{00}, p_{01}, p_{10}, p_{11} \geq 0$ and $p_{00}+p_{01}+p_{10}+p_{11}=1$.

Example: Independence Model

\diamond Let X_{1}, X_{2} be two binary variables.
Let M_{Γ} be the model containing all possible joint distributions $p=\left(p_{00}, p_{01}, p_{10}, p_{11}\right)$ for which X_{1}, X_{2} are independent.
\diamond As already discussed, all distributions p lie in Δ_{3}, i.e. they satisfy $p_{00}, p_{01}, p_{10}, p_{11} \geq 0$ and $p_{00}+p_{01}+p_{10}+p_{11}=1$.
\diamond It turns out that the distributions p also satisfy

$$
p_{00} p_{11}-p_{01} p_{10}=0
$$

and these relations define the model.

Example: Independence Model

The solutions to the polynomial $p_{00} p_{11}-p_{01} p_{10}=0$ define a (toric) variety $V_{M_{\Gamma}}$ (see 3-dimensional surface on the right).

The variety $V_{M_{\Gamma}}$ intersects with the simplex Δ_{3} to give the independence model M_{Γ} (see the 3-dimensional surface on the right).

Figures taken from 'Real equivalence of complex matrix pencils and complex projections of real Segre varieties' by Adam Coffman, and 'Mixture decompositions of exponential families using a decomposition of their sample spaces' by Guido Montufar
\diamond We saw that a decomposable model is described in terms of a variety. Studying this variety can reveal valuable information about the model.
\diamond We saw that a decomposable model is described in terms of a variety. Studying this variety can reveal valuable information about the model.
\diamond The last step for today is to pass from a toric variety to a polytope. The polytopes corresponding to toric varieties capture their geometry!

Polytopes

\diamond A polytope is a bounded convex geometric object with "flat" sides.

Figures taken from Polytope@PolytopeSpace in Twitter, and Wikipedia

Polytopes

\diamond A polytope is a bounded convex geometric object with "flat" sides.
\diamond A way to construct a polytope is to start with some vertices in \mathbb{R}^{n} and consider all points between them.

Polytopes

\diamond A polytope is a bounded convex geometric object with "flat" sides.
\diamond A way to construct a polytope is to start with some vertices in \mathbb{R}^{n} and consider all points between them.
\diamond For example, starting with the vertices
$(0,0,0),(0,0,1),(0,1,0),(0,1,1),(1,0,0),(1,0,1),(1,1,0),(1,1,1)$
in \mathbb{R}^{3} we get the unit cube.

Polytopes

\diamond All simplices are polytopes.

Polytopes

\diamond All simplices are polytopes.
\diamond The notions of face and facet generalise to all polytopes. A polytope "contains" polytopes of smaller dimension. We call faces of a polytope: all polytopes it contains and the empty set, facets of a polytope of dimension d : all faces of dimension $d-1$.

Polytopes

\diamond All simplices are polytopes.
\diamond The notions of face and facet generalise to all polytopes.
A polytope "contains" polytopes of smaller dimension. We call faces of a polytope: all polytopes it contains and the empty set, facets of a polytope of dimension d : all faces of dimension $d-1$.

From the Variety to the Polytope

\diamond There is a (toric) variety $V_{M_{\Gamma}}$ associated to each discrete decomposable model M_{Γ}, and a polytope $P_{M_{\Gamma}}$ associated to the variety.

From the Variety to the Polytope

\diamond There is a (toric) variety $V_{M_{\Gamma}}$ associated to each discrete decomposable model M_{Γ}, and a polytope $P_{M_{\Gamma}}$ associated to the variety.
\diamond However, there is a way to construct the polytope directly from the model! Its vertices can be understood from the simplicial complex Γ and the number of outcomes of the variables that define it.

Example: Independence Model

Let X_{1}, X_{2} be two binary variables.
Let M_{Γ} be the model containing all possible joint distributions $p=\left(p_{00}, p_{01}, p_{10}, p_{11}\right)$ for which X_{1}, X_{2} are independent.

The polytope $P_{M_{\Gamma}}$ that corresponds to M_{Γ} turns out to have vertices $00,01,10,11$, similar to the outcomes of X_{1}, X_{2}.

Example: Independence Model

Let X_{1}, X_{2} be two binary variables.
Let M_{Γ} be the model containing all possible joint distributions $p=\left(p_{00}, p_{01}, p_{10}, p_{11}\right)$ for which X_{1}, X_{2} are independent.

The polytope $P_{M_{\Gamma}}$ that corresponds to M_{Γ} turns out to have vertices $00,01,10,11$, similar to the outcomes of X_{1}, X_{2}.

We can subsequently study the structure/geometry of the square $P_{M_{\Gamma}}$ to make conclusions about the model M_{Γ}.

When investigating a polytope's combinatorics, there are several questions to be explored, such as

1) What are the facets of the polytope $P_{M_{\Gamma}}$? Answered
2) Does $P_{M_{\Gamma}}$ admit a regular unimodular triangulation? Answered What combinatorial information does this triangulation carry Open.
3) What are the enumerative properties of $P_{M_{\Gamma}}$ (such as the number of faces of each dimension and its volume)? First results.

Summary

Let X_{1}, X_{2} be binary discrete variables.
Starting with a decomposable simplicial complex Γ with m vertices

we can pass to a discrete decomposable model M_{Γ} (and vice versa)

$$
\{\text { positive part of the Independence Model }\}
$$

The Independence model M_{Γ}^{\prime} is linked to a (toric) variety $V_{M_{\Gamma}}$ and a polytope $P_{M_{\Gamma}}$

Then we can investigate the structure of this polytope to see if it carries useful information in relation to probabilistic inference.

The end

Thanks!

