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Introduction

We study discrete decomposable models, a family of statistical models that lie in the class of hierarchical models. Decomposable
models and their corresponding graphs are of wide use throughout statistics and data science. For instance, directed acyclic
graphs (DAGs) can be approximated by decomposable graphs. The complexity of this approximation determines the complexity of
probabilistic inference algorithms for DAG models such as variable elimination. Therefore, the combinatorics of the graphs defining
the decomposable models carry important information in regard to probabilistic inference. The goal of this project is to explore
at a deeper level the information encoded in combinatorial objects associated to decomposable models.

Definition
A decomposable simplicial complex Γ is a collection of simplices, i.e.
nodes, edges, triangles, tetrahedra, etc., that are glued together (in a certain
way). The simplices in Γ are called faces and the (non-trivial) inclusion-
maximal faces are called facets.
For example, the graph on the right denotes a decomposable simplicial com-
plex on 9 nodes. The edge {1,2}, the triangle {2,3,4} and the node {7} are
some of its facets.
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Discrete decomposable models

Let r1, ..., rm ∈ N be the number outcomes of the discrete variables
X1, X2, ..., Xm, respectively, and let R = r1 × · · · × rm be the set of
all possible outcomes. The joint distribution of X1, ..., Xm lies in the
(#R− 1)-dimensional probability simplex

∆#R−1 = {p ∈ R#R : pi ≥ 0, for all i ∈ R and
∑

i∈R
pi = 1}.

The decomposable model associated with a decomposable simplicial
complex Γ is

MΓ = {p ∈ ∆#R−1 : pi =
1

Z(θ)

∏

F∈facet(Γ)

θ
(F )
iF

for all i ∈ R},

for θ(F )
iF

positive parameters and Z(θ) normalizing constant.

From the model to the polytope

Apart from the graph Γ, there are other combinatorial objects linked to a
decomposable model MΓ. In fact, MΓ can be written as the intersection
of a toric variety VMΓ

with the probability simplex ∆#R−1.

For example, for #R = 3,

MΓ = VMΓ ∩∆2

∆2

MΓ

From the toric variety, which is an algebro-geometric object, we can pass
to a polytope PMΓ

, a geometric object. It is a property of toric varieties
that the geometric properties of VMΓ

are encoded in the polytope PMΓ
.

MΓ

↷
PMΓ

In this project, we are investigating the structure of this polytope to see
if it carries useful information in relation to probabilistic inference.

Getting to know the polytope

When investigating a polytope’s combinatorics, there are several questions
to be explored, such as
• What are the facets of the polytope PMΓ

? Answered in [1].

The facets are given by xF
iF

≥ 0 for F ∈ facets(Γ) and iF ∈ RF .

• Does PMΓ admit a regular unimodular triangulation? Answered in [2].

Yes!

What combinatorial information does this triangulation carry? Open.
• What are the enumerative properties of PMΓ

? Our results.

To this end, we study the structure of an integer polynomial associated
to PMΓ , called the h∗-polynomial,

h∗(x) = h∗
0 + h∗

1x+ · · ·+ h∗
#R−1x

#R−1.

This polynomial captures important information about the polytope, in-
cluding its volume and whether or not the polytope PMΓ , and hence the
model MΓ, has the Gorenstein property. In fact, the decomposable model
MΓ is Gorenstein if and only if h∗(x) is palindromic.
We characterize all Gorenstein discrete decomposable binary models for
forests Γ.

Theorem 1
Let Γ be a forest on m nodes and
X1, ..., Xm be binary variables.
Then MΓ is Gorenstein if and only if all
connected components of Γ have

exactly one vertex,

strictly more than one vertex.
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Future work

We will continue exploring the combinatorial properties of discrete de-
composable models, and their interpretation in terms of statistics. Our
current goals are to

1. Interpret the observations in Theorem 1 statistically.

2. Generalize Theorem 1 to characterize all discrete decomposable models.
We already have a conjecture in this direction.

3. Analyze the information that the triangulation constructed in [2] carries.

Decomposable Simplicial Complexes

Decomposable Models

From the Model to the Polytope

The Polytope



Outline: Discrete Decomposable Models

Discrete Decomposable Models are defined through some fine
geometric/combinatorial objects called simplices. They provide a
way to do probabilistic inference, i.e. to compute the probability
P(Xi1 ,Xi2 , ...,Xik ), given P(X1,X2, ...,Xm) for discrete variables
X1,X2, ...,Xm.

First, we will discuss

⋄ simplices,

⋄ simplicial complexes,

⋄ decomposable simplicial complexes.



Simplex
A (geometric) simplex of dimension d can be thought of as a
d-dimensional generalisation of a triangle: d + 1 vertices, all
connected to each other, forming a d-dimensional object.

Figure appearing in ’Navigation and Stabilization of Swarms of Micro Aerial Vehicles in Complex Environment’ by
Petr Vsetecka and Martin Saska (2015)



Simplex

A (geometric) simplex of dimension d can be thought of as a
d-dimensional generalisation of a triangle: d + 1 vertices, all
connected to each other, forming a d-dimensional object.

A simplex contains simplices of smaller dimension. We call
faces of a simplex: all simplices it contains and the empty set,
facets of a simplex of dimension d : all faces of dimension d − 1.



Simplicial Complex

A simplicial complex is a collection of simplices that may be
glued together.
The simplices glued together should intersect in smaller simplices.

Example Non-example

Figures taken from Wikipedia



Simplicial Complex

Given a simplicial complex Γ we call
faces of Γ: all simplices it contains and the empty set,
facets of Γ: all inclusion-wise maximal simplices it contains.

Example
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Decomposable Simplicial Complexes

We are interested in simplicial complexes with even finer
combinatorial/geometric properties.
Such examples are decomposable simplicial complexes.
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Decomposable Simplicial Complexes

We are interested in simplicial complexes with even finer
combinatorial/geometric properties.
Such examples are decomposable simplicial complexes.
I think of decomposable simplicial complexes as simplicial complexes that
intersect at a simplex and you can ’break’ into two repeatedly and end up
with the facets of the simplicial complex (see below).
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Decomposable Simplicial Complexes

We are interested in simplicial complexes with even finer
combinatorial/geometric properties.
Such examples are decomposable simplicial complexes.
I think of decomposable simplicial complexes as simplicial complexes that
intersect at a simplex and you can ’break’ into two repeatedly and end up
with the facets of the simplicial complex (see below).
Counterexample:

2

31



⋄ We will see how to construct statistical models starting with a
decomposable simplicial complex.

⋄ These models have nice combinatorial properties that allow us to
apply probabilistic efficient inference techniques such as variable
elimination.



Probability simplex

Let X1, ...,Xm be discrete random variables.
Let r1, ..., rm ∈ N be the number outcomes of X1,X2, ...,Xm, and
let R = r1 × · · · × rm be the set of all possible outcomes.

The joint distribution of X1, ...,Xm lies in the
(#R− 1)-dimensional probability simplex

∆#R−1 = {p ∈ R#R : pi ≥ 0, for all i ∈ R and
∑

i∈R
pi = 1}.

for some choice of r1, . . . , rm.



Probability simplex

Let X1, ...,Xm be discrete random variables.
Let r1, ..., rm ∈ N be the number outcomes of X1,X2, ...,Xm, and
let R = r1 × · · · × rm be the set of all possible outcomes.

The joint distribution of X1, ...,Xm lies in the
(#R− 1)-dimensional probability simplex

∆#R−1 = {p ∈ R#R : pi ≥ 0, for all i ∈ R and
∑

i∈R
pi = 1}.

A (discrete) statistical model M is a subset of ∆#R−1 for some
choice of r1, . . . , rm.



Example: Independence Model

Consider variables X1,X2 such that r1 = r2 = 2 (binary).
There are 4 possible outcomes: {00, 01, 10, 11}.
Their joint probability distribution p satisfies

p00, p01, p10, p11 ≥ 0

and
p00 + p01 + p10 + p11 = 1.

We can think of the points (p00, p01, p10, p11) as a 3-dimensional
probability simplex.



Example: Independence Model

Consider variables X1,X2 such that r1 = r2 = 2 (binary).
There are 4 possible outcomes: {00, 01, 10, 11}.
Their joint probability distribution p satisfies

p00, p01, p10, p11 ≥ 0

and
p00 + p01 + p10 + p11 = 1.

We can think of the points (p00, p01, p10, p11) as a 3-dimensional
probability simplex.

A statistical model is a part of this simplex. It represents a set of
candidates for the unknown distribution p.



We will talk about a family of statistical models that can be
described in a nice geometric way:

as intersections of simplices with toric varieties.



Discrete Decomposable Models

Let r1, ..., rm ∈ N be the number of outcomes of the discrete
variables X1,X2, ...,Xm, respectively, and let R = r1 × · · · × rm be
the set of all possible outcomes.

Let Γ be a decomposable simplicial complex with m vertices.

The decomposable model MΓ associated with Γ is

MΓ = {p ∈ ∆#R−1 : pi =
1

Z (θ)

∏

F∈facet(Γ)

θ
(F )
iF

for all i ∈ R},

for θ
(F )
iF

positive parameters and Z (θ) normalizing constant.



Discrete Decomposable Models

Let r1, ..., rm ∈ N be the number of outcomes of the discrete
variables X1,X2, ...,Xm, respectively, and let R = r1 × · · · × rm be
the set of all possible outcomes.

Let Γ be a decomposable simplicial complex with m vertices.

The decomposable model MΓ associated with Γ is

MΓ = {p ∈ ∆#R−1 : pi =
1

Z (θ)

∏

F∈facet(Γ)

θ
(F )
iF

for all i ∈ R},

for θ
(F )
iF

positive parameters and Z (θ) normalizing constant.
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Example: Independence Model

Consider variables X1,X2 such that r1 = r2 = 2 (binary).
Let Γ be a simplicial complex consisting of 2 vertices.

21 Γ



Example: Independence Model

Consider variables X1,X2 such that r1 = r2 = 2 (binary).
Let Γ be a simplicial complex consisting of 2 vertices.

21 Γ

The decomposable model MΓ associated with Γ is

MΓ =
{
p = (p00, p01, p10, p11) ∈ ∆3 :

pi1i2 =
θ
(1)
i1

θ
(2)
i2

θ
(1)
0 θ

(2)
0 + θ

(1)
0 θ

(2)
1 + θ

(1)
1 θ

(2)
0 + θ

(1)
1 θ

(2)
1

, i1i2 ∈ {00, 01, 10, 11}
}
,

where θ
(1)
0 , θ

(1)
1 , θ

(2)
0 , θ

(2)
1 are positive parameters.



Example: Independence Model

Consider variables X1,X2 such that r1 = r2 = 2 (binary).
Let Γ be a simplicial complex consisting of 2 vertices.

21 Γ

The decomposable model MΓ associated with Γ is

MΓ =
{
p = (p00, p01, p10, p11) ∈ ∆3 :

pi1i2 =
θ
(1)
i1

θ
(2)
i2

θ
(1)
0 θ

(2)
0 + θ

(1)
0 θ

(2)
1 + θ

(1)
1 θ

(2)
0 + θ

(1)
1 θ

(2)
1

, i1i2 ∈ {00, 01, 10, 11}
}
,

where θ
(1)
0 , θ

(1)
1 , θ

(2)
0 , θ

(2)
1 are positive parameters.

It turns out that MΓ contains all positive distributions for which
X1,X2 are independent.



Outline: From the Model to the Polytope

We discussed how graphs are associated to discrete decomposable
models. We will briefly introduce other objects that relate to
decomposable models:

⋄ varieties

⋄ polytopes



Varieties

⋄ Algebraic varieties are algebro-geometric objects.

⋄ You can think of an algebraic variety as the set of solutions of a
system of polynomial equations over the real (or complex)
numbers.

⋄ For example, the unit circle is the set of real pairs (x , y) such
that x2 + y2 − 1 = 0.

Figure taken from ’javaTpoint’



From the Model to the Variety

Every decomposable model MΓ can be written as the intersection
of a (toric) variety VMΓ

with the probability simplex ∆#R−1,

MΓ = VMΓ
∩∆#R−1.

MΓ



Example: Independence Model

⋄ Let X1,X2 be two binary variables.
Let MΓ be the model containing all possible joint distributions
p = (p00, p01, p10, p11) for which X1,X2 are independent.



Example: Independence Model

⋄ Let X1,X2 be two binary variables.
Let MΓ be the model containing all possible joint distributions
p = (p00, p01, p10, p11) for which X1,X2 are independent.

⋄ As already discussed, all distributions p lie in ∆3, i.e. they satisfy
p00, p01, p10, p11 ≥ 0 and p00 + p01 + p10 + p11 = 1.



Example: Independence Model

⋄ Let X1,X2 be two binary variables.
Let MΓ be the model containing all possible joint distributions
p = (p00, p01, p10, p11) for which X1,X2 are independent.

⋄ As already discussed, all distributions p lie in ∆3, i.e. they satisfy
p00, p01, p10, p11 ≥ 0 and p00 + p01 + p10 + p11 = 1.

⋄ It turns out that the distributions p also satisfy

p00p11 − p01p10 = 0

and these relations define the model.



Example: Independence Model

The solutions to the polynomial
p00p11 − p01p10 = 0 define a
(toric) variety VMΓ

(see
3-dimensional surface on the
right).

The variety VMΓ
intersects with

the simplex ∆3 to give the
independence model MΓ (see the
3-dimensional surface on the
right).

Figures taken from ’Real equivalence of complex matrix pencils and complex projections of real Segre varieties’ by
Adam Coffman, and ’Mixture decompositions of exponential families using a decomposition of their sample spaces’
by Guido Montufar



⋄ We saw that a decomposable model is described in terms of
a variety. Studying this variety can reveal valuable information
about the model.



⋄ We saw that a decomposable model is described in terms of
a variety. Studying this variety can reveal valuable information
about the model.

⋄ The last step for today is to pass from a toric variety to a
polytope. The polytopes corresponding to toric varieties
capture their geometry!



Polytopes

⋄ A polytope is a bounded convex geometric object with ”flat”
sides.

Figures taken from Polytope@PolytopeSpace in Twitter, and Wikipedia



Polytopes

⋄ A polytope is a bounded convex geometric object with ”flat”
sides.

⋄ A way to construct a polytope is to start with some vertices in
Rn and consider all points between them.



Polytopes

⋄ A polytope is a bounded convex geometric object with ”flat”
sides.

⋄ A way to construct a polytope is to start with some vertices in
Rn and consider all points between them.

⋄ For example, starting with the vertices
(0, 0, 0), (0, 0, 1), (0, 1, 0), (0, 1, 1), (1, 0, 0), (1, 0, 1), (1, 1, 0), (1, 1, 1)
in R3 we get the unit cube.



Polytopes

⋄ All simplices are polytopes.



Polytopes

⋄ All simplices are polytopes.

⋄ The notions of face and facet generalise to all polytopes.
A polytope ”contains” polytopes of smaller dimension. We call
faces of a polytope: all polytopes it contains and the empty set,
facets of a polytope of dimension d : all faces of dimension d − 1.



Polytopes

⋄ All simplices are polytopes.

⋄ The notions of face and facet generalise to all polytopes.
A polytope ”contains” polytopes of smaller dimension. We call
faces of a polytope: all polytopes it contains and the empty set,
facets of a polytope of dimension d : all faces of dimension d − 1.



From the Variety to the Polytope

⋄ There is a (toric) variety VMΓ
associated to each discrete

decomposable model MΓ, and a polytope PMΓ
associated to the

variety.



From the Variety to the Polytope

⋄ There is a (toric) variety VMΓ
associated to each discrete

decomposable model MΓ, and a polytope PMΓ
associated to the

variety.

⋄ However, there is a way to construct the polytope directly from
the model! Its vertices can be understood from the simplicial
complex Γ and the number of outcomes of the variables that define
it.



Example: Independence Model

Let X1,X2 be two binary variables.
Let MΓ be the model containing all possible joint distributions
p = (p00, p01, p10, p11) for which X1,X2 are independent.

The polytope PMΓ
that corresponds to MΓ turns out to have

vertices 00, 01, 10, 11, similar to the outcomes of X1,X2.

00

10 11

01



Example: Independence Model

Let X1,X2 be two binary variables.
Let MΓ be the model containing all possible joint distributions
p = (p00, p01, p10, p11) for which X1,X2 are independent.

The polytope PMΓ
that corresponds to MΓ turns out to have

vertices 00, 01, 10, 11, similar to the outcomes of X1,X2.

00

10 11

01

We can subsequently study the structure/geometry of the square
PMΓ

to make conclusions about the model MΓ.



When investigating a polytope’s combinatorics, there are several
questions to be explored, such as

1) What are the facets of the polytope PMΓ
? Answered

2) Does PMΓ
admit a regular unimodular triangulation? Answered

What combinatorial information does this triangulation carry
Open.

3) What are the enumerative properties of PMΓ
(such as the

number of faces of each dimension and its volume)? First results.
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Summary
Let X1,X2 be binary discrete variables.

Starting with a decomposable simplicial complex Γ with m vertices

21 Γ

we can pass to a discrete decomposable model MΓ (and vice versa)
{
positive part of the Independence Model

}

The Independence model M ′
Γ is linked to a (toric) variety VMΓ

and
a polytope PMΓ

VMΓ
00

10 11

01 PMΓ

Then we can investigate the structure of this polytope to see if it
carries useful information in relation to probabilistic inference.



The end

Thanks!


