
WASP WINTER CONFERENCE 
2022

Poster Catalogue
AI MLX



AI MLX

Author
Ahmadian,Amirhossein.............................................................................................................
Alkhatib, Amr..................................................................................................................................
Almeida, Tiago...............................................................................................................................
Banerjee, Sourasekhar...............................................................................................................
Bereza, Robert................................................................................................................................
Blöcker, Christopher....................................................................................................................
Brunnsåker	, Daniel......................................................................................................................
Bökman, Georg..............................................................................................................................
Caylak, Gizem.................................................................................................................................
Cornell, Filip.....................................................................................................................................
Doostmohammedi, Ehsan........................................................................................................ 
Drexler, Dominik........................................................................................................................... 
Dürr, Alexander.............................................................................................................................. 
Ek, Sofia............................................................................................................................................. 
Englesson, Erik.............................................................................................................................. 
Eriksson, Hannes.......................................................................................................................... 
Faridghasemnia, Mohamadreza........................................................................................... 
Fay, Dominik...................................................................................................................................
Fredin Haslum, Johan................................................................................................................. 
Fu, Jingru.......................................................................................................................................... 
Gedon, Daniel................................................................................................................................ 
Gillsjö, David................................................................................................................................... 
Govindarajan, Hariprasath....................................................................................................... 
Gower, Alexander.......................................................................................................................... 
Grönqvist, Johan........................................................................................................................... 
Gugliermo, Simona...................................................................................................................... 
Gummesson Svensson, Hampus.........................................................................................
Gutierrez Maestro, Eduardo.....................................................................................................
Hagström, Lovisa...........................................................................................................................
Heimerson, Albin........................................................................................................................... 
Hvarfner, Carl..................................................................................................................................
Jin, Yifei..............................................................................................................................................
Jorge, Emilio.....................................................................................................................................
Karlsson, Alexander.....................................................................................................................
Kidane, Lidia....................................................................................................................................
Konuk, Emir.....................................................................................................................................
Kwatra, Saloni..................................................................................................................................

WASP WINTER CONFERENCE 2022
POSTER CATALOGUE 2/4

Pages
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67

A+B
A+B
A+B
A+B
A+B
A+B
A+B
A+B
A+B
A+B
A+B
A+B
A+B
A+B
A+B
A+B
A+B
A+B
A+B
A+B
A+B
A+B
A+B
A+B
A+B
A+B
A+B
A+B
A+B
A+B
A+B
A+B
A+B
A+B
A+B
A+B
A+B



AI MLX

Author
Källström, Johan.............................................................................................................................
Lindqvist, Jakob.............................................................................................................................
Lourenço, Inês...............................................................................................................................
Marti, Miquel...................................................................................................................................
Matsoukas, Christos....................................................................................................................
Matsson, Anton..............................................................................................................................
Mehta, Shivam................................................................................................................................
Melnyk, Pavlo..................................................................................................................................
Mendez, Julian Alfredo...............................................................................................................
Mwai, Newton.................................................................................................................................
Norlund, Tobias..............................................................................................................................
Olmin, Amanda..............................................................................................................................
Oskarsson, Joel..............................................................................................................................
Patil, Minal Suresh........................................................................................................................
Paul, Suditpta.................................................................................................................................
Pellaco, Lissy................................................................................................................................... 
Persson, Patrik................................................................................................................................
Poceviciute, Milda........................................................................................................................ 
Rahbar, Arman................................................................................................................................
Sanchez Aimar, Emanuel..........................................................................................................
Shahriari-mehr, Firooz................................................................................................................
Sidwall Thygesen	, Signe...........................................................................................................
Stempfle, Lena...............................................................................................................................
Sundqvist, Tobias..........................................................................................................................
Tabakovic, Selma...........................................................................................................................
Taha, Mariam...................................................................................................................................
Tarle, Magnus.................................................................................................................................
Terra, Ahmad...................................................................................................................................
Wallin, Erik.......................................................................................................................................
Willemsen, Bram...........................................................................................................................
Yang, Quantao................................................................................................................................
Zangeneh Kamali, Fereidoon..................................................................................................
Zhang, Chi........................................................................................................................................
Åkerblom, Niklas............................................................................................................................

WASP WINTER CONFERENCE 2022
POSTER CATALOGUE 2/4

Pages
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101

A+B
A+B
A+B
A+B
A+B
A+B
A+B
A+B
A+B
A+B
A+B
A+B
A+B
A+B
A+B
A+B
A+B
A+B
A+B
A+B
A+B
A+B
A+B
A+B
A+B
A+B
A+B
A+B
A+B
A+B
A+B
A+B
A+B
A+B



Ahmadian, Amirhossein
Linköping University

31 APage

Likelihood of generative models has been used traditionally as a score to detect atypical (Out-of-Dist-
ribution, OOD) inputs. However, several recent studies have found this approach to be highly unreli-
able, even with invertible generative models, where computing the likelihood is feasible. In this paper, 
we present a different framework for generative model--based OOD detection that employs the model 
in constructing a new representation space, instead of using it directly in computing typicality scores, 
where it is emphasized that the score function should be interpretable as the similarity between the 
input and training data in the new space. In practice, with a focus on invertible models, we propose to 
extract low-dimensional features (statistics) based on the model encoder and complexity of input ima-
ges, and then use a One-Class SVM to score the data. Contrary to recently proposed OOD detection 
methods for generative models, our method does not require computing likelihood values. Conse-
quently, it is much faster when using invertible models with iteratively approximated likelihood (e.g. 
iResNet), while it still has a performance competitive with other related methods.

Likelihood-free Out-of-Distribution Detection with Invertible 
Generative Models

AI MLX
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Introduction    

 

▪ Out-of-Distribution (OOD) Detection :     : 
detecting inputs that are considerably 
different from the data on which a 
machine learning model is trained 
(anomalies, novelties). Generative models 
can be used to solve this in a completely 
unsupervised setting. 

▪ Generative models may assign much 
higher likelihoods to OOD test data than 
in-distribution data. Also, likelihood can 
be too costly to compute. 

▪ We propose a method to detect OOD inputs 
using pretrained invertible generative 
models that does not need to compute the 
model likelihood (the log-determinant 
term). It is based on fast computation of very 
low-dimensional statistics (features) using 
the invertible model and an image 
complexity measure, and employing a 
One-class SVM (OSVM) in this new 
feature space. 

 
▪  

 

OOD Detection: Similarity Score and Null Hypothesis Testing 

 
 
 

 
 
OSVM is trained on in-
distribution data in the space of 
statistics T, to obtain {Φ,ρ} 

▪ Idea: OOD Detection should be based on 
measuring a similarity/distance between 
the input and in-distribution (training) 
data. We use a one-class SVM (OSVM) to 
define a score function measuring this 
similarity of interest.  

▪ The representation space is particularly 
important. Features called ‘statistics’ are 
extracted from the input (image) and the 
generative model state. Hence, the 
generative model is involved indirectly 
through the statistics, and not its 
likelihood. 

▪ Classical null hypothesis testing is used to 
adjust the threshold on similarity, given the 
training data and a significance level. 

▪ The idea of using statistics with OSVM is 
also in Density of States Estimation (DoS) 
[Morningstar et al,2021]. However, we use 
different statistics that are faster to 
compute, while having a competitive 
performance. Our theoretical motivation is 
also different.  

 

OOD Statistics (Features) for Invertible Models 

 

 
 
 
 

 
 

▪ Simple but neglected fact: the probability of 
a class under a generative model depends 
both on the model likelihood and the region 
(particularly the volume) corresponding to 
the class. 

▪ With invertible models, the probability is a 
function of: prior density, determinant of 
encoder Jacobian, integration region. 
Some are costly or impossible to obtain, but 
we may use any function related to them as 
our statistics. 

▪ We replace the determinant term, which can 
be costly to compute, by the average of 
column-sum of the encoder Jacobian 
matrix, that is another function of Jacobian 
matrix. 

▪ Heuristic: more complex inputs are likely to 
come from a region with high volume. 
Assuming image data, we use the 
compression size of image using FLIF 
format as a proxy for the region volume.  

 

Performance Results and Comparison 

▪ Evaluated on some popular OOD detection tasks such as FashionMNIST 
vs. MNIST and CIFAR-10 vs. SVHN with the models Glow, iResNet, and 
ResFlow, and compared to 4 other methods in terms of Area Under ROC 
curve (AUROC) 

▪ Two combinations of the following statistics: 
          𝑇𝑇1 = 𝑙𝑙𝑙𝑙𝑙𝑙 𝑝𝑝𝑍𝑍(𝑓𝑓(𝑥𝑥)), 𝑇𝑇2 = 𝐶𝐶𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(𝑥𝑥),  𝑇𝑇3 = mean|∑ 𝐽𝐽𝑖𝑖𝑖𝑖𝑖𝑖 | 

     where f(.) is the encoder of invertible model, and J is its Jacobian matrix. 
▪ Our method is competitive with the other ones overall. It ranks first in 

5 cases, although it is outperformed by another method in 2 cases. It is 
better than S-Score [Serra et al,2020] in most cases, which also uses FLIF 
image compression size complexity measure.  

▪ Most near OODs, e.g. CIFAR-10 vs. CIFAR-100 are not detected well by 
any of the methods 

 

Model/Data T1,T2 T1,T3 DoS S-Score Simple LL 
iResNet trained on 
MNIST 

     

OOD: FashionMNIST 0.99 0.99 0.99 0.97 0.99 
iResNet trained on 
FashionMNIST 

     

   OOD: MNIST 0.96 0.89 0.88 0.95 0.07 
OOD: Vertical Flipped 0.62 0.60 0.63 0.66 0.55 

ResFlow trained on 
CIFAR10 

     

   OOD: SVHN 0.96 0.92 0.94 0.89 0.10 
OOD: Vertical Flipped 0.50 0.54 0.52 0.54 0.51 

Glow trained on 
CIFAR10 

     

       OOD: SVHN 0.96 0.91 0.95 0.88 0.09 
OOD: CIFAR100 0.57 0.56 0.57 0.49 0.52 

 
 

 

Likelihood-free Out-of-Distribution Detection with Invertible Generative Models 
Amirhossein Ahmadian and Fredrik Lindsten 

Department of Computer and Information Science, Linköping University 

WASP Winter Conference 2022   /   Published at IJCAI 2021 

iResNet loglikelihoods on two 
datasets 
In-distribution:  
FashionMNIST (blue)  
OOD: MNIST (orange) 

Computational Cost Advantage 

 
Model/Data Log-likelihood 

Approximation 
T3 statistic 

iResNet - MNIST 209ms 3ms 
ResFlow – 
CIFAR10 

378ms 20ms 

GLOW-CIFAR10 - 18 
 
T2 statistic: 13ms per image 
                     (Linux core-i7 machine) 

▪ All the compared methods are dependent on model likelihood values. In some types of invertible 
models such as iResNet and ResFlow, likelihood is quite costly to compute since the Jacobian 
determinant term needs iterative approximation. 

▪ None of the statistics we suggest depend on explicit evaluation of likelihood (Jacobian 
determinant). Consequently, our method can be about 10 times faster at test time. T2 comes from 
a fast image compression algorithm and T3 from a typical automatic differentiation.  

▪ Considering the close AUROC performance with the other methods, the primary advantage of our 
method is its speed.  
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Current techniques for explaining black-box predictions rarely produce explanations that generalize 
beyond the explained instances and hence do not allow for verification or prediction.  A method for 
generating global explanatory rules by aggregating multiple local explanations is proposed. The gene-
rated rules can be used to understand how the black-box model operates in general and also emulate 
the model. The proposed method is applied to several different explanation techniques, individually 
and in combination. Experimental results show that the method produces high fidelity rules that are 
often as accurate as, and sometimes even more accurate than, the underlying black-box model.

Global Explanation by Characteristic Rules Extraction

AI MLX
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Global Explanation by Characteristic Rules Extraction

Amr Alkhatib and Henrik Boström
KTH Royal Institute of Technology

School of Electrical Engineering and Computer Science (EECS)

Current techniques for explaining black-box predictions rarely produce explanations that generalize beyond the explained
instances and hence do not allow for verification or prediction. A method for generating global explanatory rules by
aggregating multiple local explanations is proposed. The generated rules can be used to understand how the black-box
model operates in general and also emulate the model. The proposed method is applied to several different explanation
techniques, individually and in combination. Experimental results show that the method produces high fidelity rules that are
often as accurate as, and sometimes even more accurate than, the underlying black-box model.

Introduction

References
1. Scott M Lundberg and Su-In Lee. “A Unified Approach to Interpreting Model

Predictions”. In: Advances in Neural Information Processing Systems 30. Ed. by
I. Guyon et al. Curran Associates, Inc., 2017, pp. 4765–4774. url:
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International Conference on Very Large Data Bases. VLDB ’94. San Francisco,
CA, USA: Morgan Kaufmann Publishers Inc., 1994, pp. 487–499. isbn: 155860-
153-8. url: http://dl.acm.org/citation.cfm?id=645920.672836.

Abstract

The discriminative rules are a way to distinguish the given class
from other classes using the minimum possible number of
features, while a characteristic rule is the conjunction of all
features that are common to all instances in the class.
Extracting the characteristic explanations to a representative
subset of a class of instances provides a good approximation to
that class's true set of global explanations.

Discriminative vs. Characteristic Rules
Techniques for explaining black box models can be classified
into local and global methods. A local explanation method
explains a single prediction made by a model, while global
interpretations provide an understanding of how the model
behaves in general and which features are globally important.
The local explanations are not empirically verifiable and cannot
be easily used to understand the general behavior of the
underlying model. We propose a method for generating
explanations in the form of general rules, by aggregating multiple
specific explanations. The rules can be combined to explain and
emulate the underlying black-box model.

From Local Explanations to 
Global Rules

The Accuracy of The Rules

Conclusion and Future Work
This work proposes a method to aggregate local explanations
and extract characteristic global explanations that we can test
and measure their fidelity to the underlying model and apply to
new data instances. We also show that the characteristic global
explanations have high fidelity and can be more accurate than
the black-box model. The method was used to compare different
local explanation techniques and also to combine them for more
accurate global explanations. An interesting direction for future
work is to include the relative importance of each feature in the
local explanations to compute a global explanation. It could also
be interesting to use conformal prediction frameworks with
explanation techniques to measure and quantify the provided
explanations' good.
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Psychological assistive robots are the next generation of service robots due to the continuous  
increase of mental illnesses in modern societies. In order to provide the best human-robot  
experience, the robot should be able to perceive and predict future human behaviors. Therefore,  
this research stands out for the study of Machine Learning methodologies for learning people’s
behavior and conduct during daily life. The hypothesis is that the human’s state (a latent variable  
describing the particular human state) is a powerful feature for predicting future behaviors, and a 
central point for designing a better Human-Robot Interaction.
In this way, we intend to delve into this problem by finding behavioral patterns (ways of moving,  
daily life activities, physical reactions, etc.) induced by different human states and then learn the  
best robot interaction.

Mental well-being awareness for Human-Robot Interaction

AI MLX
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Mental well-being awareness for Human-Robot 
Interaction

Tiago Almeida, Örebro University
Center for Applied Autonomous Sensor Systems (AASS)

Psychological assistive robots are the next generation of service robots due to the continuous increase of mental illnesses in 
modern societies. In order to provide the best human-robot experience, the robot should be able to perceive and predict future 
human behaviors. Therefore, this research stands out for the study of Machine Learning methodologies for learning people’s 
behavior and conduct during daily life. The hypothesis is that the human’s state (a latent variable describing the particular human 
state) is a powerful feature for predicting future behaviors, and a central point for designing a better Human-Robot Interaction. 
In this way, we intend to delve into this problem by finding behavioral patterns (ways of moving, daily life activities, physical 
reactions, etc.) induced by different human states and then learn the best robot interaction.

Overview

References

Motivation & Research Goals

Mental well-being aware Human Motion Prediction
1. Observe (x, y) position for person i during period t, so Ot

i  in 
context C 

2. Estimate mental-well being, Mt
i based on Ot

i, and C
3. Predict the next coordinates (x’, y’) conditioned on Mi over 

a period 𝛕𝛕

First Ideas
Mental well-being

● happiness
● sadness
● neutral
● angriness
● relaxation
● stress

Awareness
● perceive the mental well-being [1]
● find behavioral patterns that indicate

the mental well-being
● predict behaviors conditioned on 

different mental states
● use evidences from Psychology

Human-Robot Interaction
● how the robot should navigate in a 

human-centred environment [2, 3]
● how the robot should approach the

human [2]
●  adaptive behaviors [3]

Goal

Ot
1

O𝛕𝛕
1 ?

C

Mt
2Mt

1

1. T. Randhavane, U. Bhattacharya, K. Kapsaskis, K. Gray, A. Bera and D. Manocha, "Learning 
Perceived Emotion Using Affective and Deep Features for Mental Health Applications," 2019 
IEEE International Symposium on Mixed and Augmented Reality Adjunct (ISMAR-Adjunct), 
2019, pp. 395-399, doi: 10.1109/ISMAR-Adjunct.2019.000-2.

2. V. Tolani, S. Bansal, A. Faust and C. Tomlin, "Visual Navigation Among Humans With Optimal 
Control as a Supervisor," in IEEE Robotics and Automation Letters, vol. 6, no. 2, pp. 
2288-2295, April 2021, doi: 10.1109/LRA.2021.3060638.

3. P. Scales, O. Aycard and V. Aubergé, "Studying Navigation as a Form of Interaction: a Design 
Approach for Social Robot Navigation Methods," 2020 IEEE International Conference on 
Robotics and Automation (ICRA), 2020, pp. 6965-6972, doi: 
10.1109/ICRA40945.2020.9197037.

4. V. Narayanan, B. M. Manoghar, V. Sashank Dorbala, D. Manocha and A. Bera, "ProxEmo: 
Gait-based Emotion Learning and Multi-view Proxemic Fusion for Socially-Aware Robot 
Navigation," 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems 
(IROS), 2020, pp. 8200-8207, doi: 10.1109/IROS45743.2020.9340710.

O𝛕𝛕
1 ?

Trajectories conditioned on different mental states
1. Design mental well-being constrained experiments
2. Collect different trajectories of different people under 

different mental states
3. Assess the mental state of people during the experiments

Hypothesis
● There is a correlation between behavioral patterns (motion 

trajectories) and mental states

Stressed  human’s trajectory
Relaxed human’s trajectory
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In the era of big data and federated learning, traditional feature selection methods show unacceptable 
performance for handling heterogeneity when deployed in federated environments. We propose Fed-
FiS, an information-theoretic federated feature selection approach to overcome the problem occur 
due to heterogeneity. Fed-FiS estimates feature-feature mutual information (FFMI) and feature-class 
mutual information (FCMI) to generate a local feature subset in each user device. Based on federated 
values across features and classes obtained from each device, the central server ranks each feature 
and generates a global dominant feature subset. We show that our approach can find stable features 
subset collaboratively from all local devices. Extensive experiments based on multiple benchmark iid 
(independent and identically distributed) and non-iid datasets demonstrate that Fed-FiS significantly 
improves overall performance in comparison to the state-of-the-art methods.

Fed-FiS : A Novel Information-theoretic Federated  Feature Selection 
for Learning Stability

AI MLX
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Fed-FiS: A Novel Information-theoretic Federated 
Feature Selection for Learning Stability

Sourasekhar Banerjee, Umeå University
Dept. of Computing Science

Supervisors: Monowar Bhuyan, Erik Elmroth
sourasb@cs.umu.se, monowar@cs.umu.se, elmroth@cs.umu.se

References

Abstract

Future Work

Ø Fed-FiS introduces a local feature subset selection method by
using mutual information and clustering.

Ø We develop a score function based on FCMI and aFFMI for
global feature subset selection.

Ø Fed-FiS finds a most relevant features set from all devices
where data is distributed in iid and non-iid manner.

Autonomous 
Distributed Systems 

Lab

In the era of big data and federated learning, traditional feature selection methods show unacceptable performance for handling heterogeneity when deployed in federated environments.
We propose Fed-FiS, an information-theoretic federated feature selection approach to overcome the problem occur due to heterogeneity. Fed-FiS estimates feature-feature mutual
information (FFMI) and feature-class mutual information (FCMI) to generate a local feature subset in each user device. Based on federated values across features and classes obtained
from each device, the central server ranks each feature and generates a global dominant feature subset. We show that our approach can find stable features subset collaboratively from
all local devices. Extensive experiments based on multiple benchmark iid (independent and identically distributed) and non-iid datasets demonstrate that Fed-FiS significantly improves
overall performance in comparison to the state-of-the-art methods. This is the first work on feature selection in a federated learning system to the best of our knowledge.

Introduction

Problems

ØPrivacy preserving, collaborative machine learning technique.
ØTrains local models on data samples of each edge device

without exchanging raw data.
ØServer receives local models from edge devices
ØAggregate the models and produce global model.
ØThis process continues until the global model converges.

ØWe propose Fed-FiS, a mutual information-
based federated feature selection method to
select strongly relevant features set for stable
and low-cost federated learning.

ØFed-FiS achieved expected model
performance with lower number of features
set, verified with federated forest algorithm.

ØFor IID dataset Fed-FiS gives expected
performance but for non-IID dataset, size of
overlapping feature set is important

Ø Results and discussions

FCMI 

scores

FFMI 

scores

Higher

FCMI 

score

Lower

FFMI 

score

Union of cluster with

higher FCMI and

lower FFMI score

ØCluster analysis and local feature subset (for Cl1 ) ØGlobal feature subset 
selection

ØSteady learning ability

Ø Edge devices are normally
low performing devices with
limited resources. Therefore,
computing models from
terabytes of data is difficult.

Ø Sending terabytes of
unprocessed data to server
is costly and also violate
privacy of users.

ØInference
ØFor iid datasets the performance
of Fed-FiS is equivalent to
classical MI based Feature
selection method.

Ø Feature selection is
essential and
paramount to process
such data and
uncover useful
knowledge for
developing low-cost
models.

Objective

Contributions

Fed-FiS: Proposed Approach

Ø Local feature selection Ø Global feature selection
ØGlobal score 
function

ØWhere,

ØFeature triplet 
Øfeature_id,
Øfcmi score
Øaffmi score

Conclusion
Ø More extensive experiments to check robustness 

of Fed-FiS for different type of dataset, such as, 
Feature distribution skew, Label distribution skew,

Same label different features, Same features different 
labels, quantity skew or unbalancedness.

Ø Application specific implementation of Fed-FiS.
Ex. Anomaly detection.

Ø Simulation setup

Ø Data division
Features

S
a
m

p
le

s

...

Features

S
a

m
p

le
s

...

Horizontal or iid Hybrid or non-iid

ØDatasets
ØNSL-KDD99  ØAnonymized creditcard 

transaction dataset

1. Manikandan, G., Abirami, S.: Feature selection is important: state-of-the-art methods and application 
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41(14), 6371–6385 (2014)

3. Liu, G., et al.: Feature selection method based on mutual information and support vector machine. Int. 
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5. Gui, Y.: ADAGES: adaptive aggregation with stability for distributed feature selection. In: Proceedings 
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FCMI cluster analysis for NSL-
KDD99 iid dataset

aFFMI cluster analysis for 
NSL-KDD99 iid dataset

Clusters of features of NSL-
KDD99 dataset with respect to 
the FCMI values.

Clusters of features of NSL-
KDD99 dataset with respect to 
the aFFMI values .

Feature subset for NSL-KDD99 
iid dataset

Feature subset for NSL-KDD99 
non-iid dataset
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Differential-algebraic equations (DAEs) arise naturally as a result of equation-based object-oriented 
modeling. Such models often contain unknown parameters that have to be identified using measured 
data. A challenge with the identification of physical systems is the effect of unknown disturbances. If 
such disturbances are ignored during the identification procedure, one can obtain poor parameter es-
timates. To the best of the authors’ knowledge, there are no general methods successfully dealing with 
parameter estimation for this type of model. In this work, we propose a simulation-based prediction 
error method for non-linear DAEs where disturbances are modeled as continuous-time stochastic 
processes. We assume that the model can be simulated using available DAE solvers. Our method is 
tested on a simulated pendulum example, which suggests that our method provides consistent para-
meter estimates.

Parameter Estimation for Non-linear Differential-Algebraic Equation Models 
with Unknown Disturbances

AI MLX
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•
•

ሷ𝑥𝑥1 + 𝜃𝜃𝜃𝜃2 = 𝑤𝑤 𝑡𝑡
𝑥𝑥12 = 𝑢𝑢(𝑡𝑡)

𝑤𝑤 𝑡𝑡 , 𝑢𝑢(𝑡𝑡) 𝜃𝜃
•

𝐹𝐹 ሶ𝑥𝑥 𝑡𝑡 , 𝑥𝑥 𝑡𝑡 , 𝑢𝑢 𝑡𝑡 , 𝑤𝑤 𝑡𝑡 ; 𝜃𝜃 = 0
𝑦𝑦 𝑡𝑡; 𝜃𝜃 = 𝑞𝑞 𝑥𝑥 𝑡𝑡 , 𝑢𝑢 𝑡𝑡 ; 𝜃𝜃 + 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛

•
•

•

• 𝜃𝜃
𝑢𝑢(𝑡𝑡) 𝑦𝑦 𝑡𝑡1 , 𝑦𝑦 𝑡𝑡2 , … , 𝑦𝑦 𝑡𝑡𝑁𝑁

•

•

𝜃𝜃∘ = argmin
𝜃𝜃

𝐽𝐽𝑁𝑁 𝜃𝜃 = argmin
𝜃𝜃

1
𝑁𝑁෍

𝑘𝑘=1

𝑁𝑁

𝑦𝑦 𝑡𝑡𝑘𝑘 − E𝑤𝑤[𝑦𝑦(𝑡𝑡𝑘𝑘; 𝜃𝜃)] 2

(∗)

𝑚𝑚 ሷ𝑥𝑥1 𝑡𝑡 = 𝑥𝑥3 𝑡𝑡 𝑥𝑥1 𝑡𝑡 − 𝑘𝑘 ሶ𝑥𝑥1 𝑡𝑡 ሶ𝑥𝑥1 𝑡𝑡 + 𝑢𝑢 𝑡𝑡 + 𝑤𝑤2 𝑡𝑡
𝑚𝑚 ሷ𝑥𝑥2 𝑡𝑡 = 𝑥𝑥3 𝑡𝑡 𝑥𝑥2 𝑡𝑡 − 𝑘𝑘 ሶ𝑥𝑥2 𝑡𝑡 ሶ𝑥𝑥2 𝑡𝑡 − 𝑚𝑚𝑚𝑚
𝐿𝐿2 = 𝑥𝑥12 𝑡𝑡 + 𝑥𝑥22(𝑡𝑡)

𝑘𝑘

•

•

𝛻𝛻𝜃𝜃𝐽𝐽𝑁𝑁 𝜃𝜃 = 2
𝑁𝑁෍

𝑘𝑘=1

𝑁𝑁

𝑦𝑦 𝑡𝑡𝑘𝑘 − E𝑤𝑤[𝑦𝑦 𝑡𝑡𝑘𝑘; 𝜃𝜃 ] −𝛻𝛻𝜃𝜃Ew[𝑦𝑦 𝑡𝑡𝑘𝑘; 𝜃𝜃 ]

•
𝛻𝛻𝜃𝜃𝐽𝐽𝑁𝑁(𝜃𝜃)

𝐸𝐸𝑤𝑤 𝑦𝑦 𝑡𝑡𝑘𝑘; 𝜃𝜃 ≈ 𝑦𝑦 1 𝑡𝑡𝑘𝑘; 𝜃𝜃
𝛻𝛻𝜃𝜃𝐸𝐸𝑤𝑤 𝑦𝑦 𝑡𝑡𝑘𝑘; 𝜃𝜃 ≈ 𝛻𝛻𝜃𝜃𝑦𝑦(2)(𝑡𝑡𝑘𝑘; 𝜃𝜃)

𝑦𝑦 1 𝑡𝑡𝑘𝑘; 𝜃𝜃 𝑦𝑦(2)(𝑡𝑡𝑘𝑘; 𝜃𝜃) ∗
• 𝛻𝛻𝜃𝜃𝑦𝑦 2 𝑡𝑡𝑘𝑘; 𝜃𝜃

𝜽𝜽

𝑢𝑢(⋅)

𝐹𝐹 ⋅,⋅,⋅; 𝜃𝜃
𝑞𝑞(⋅,⋅; 𝜃𝜃)

𝑤𝑤(⋅)

𝜃𝜃

𝑦𝑦(𝑡𝑡𝑘𝑘; 𝜃𝜃)

𝜃𝜃
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To measure node importance, network scientists employ centrality scores that typically take a micro-
scopic or macroscopic perspective, relying on node features or global network structure. However, 
traditional centrality measures, such as degree centrality and PageRank, neglect the community 
structure found in real-world networks. To study node importance based on network flows from a 
mesoscopic perspective, we exploit the coding principles behind the map equation framework, and 
derive a community-aware information-theoretic centrality score analytically. Applied to artificial and 
real-world networks, we demonstrate that our approach enables a more fine-grained differentiation 
between nodes than node-local or network-global measures, and highlight the role that local network 
context plays in determining node importance.

Map Equation Centrality

AI MLX
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Map Equation Centrality:
A Map Equation-based Community-Aware Centrality Score
Christopher Blöcker1, Juan Carlos Nieves Sanchez2, and Martin Rosvall1

1Integrated Science Lab, Department of Physics, Ume̊a University
2Department of Computing Science, Ume̊a University

Abstract

To measure node importance, network scientists employ centrality scores that typically take a microscopic or macroscopic perspective, relying on node features or
global network structure. However, traditional centrality measures, such as degree centrality and PageRank, neglect the community structure found in real-world
networks. To study node importance based on network flows from a mesoscopic perspective, we exploit the coding principles behind the map equation framework,
and derive a community-aware information-theoretic centrality score analytically. Applied to artificial and real-world networks, we demonstrate that our approach
enables a more fine-grained differentiation between nodes than node-local or network-global measures, and highlight the role that local network context plays in
determining node importance.

The Map Equation Framework
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L = 2.81 bits

sender: 101 100 110 00 01 11110 01 1110 (24 bits)

(a) A one-level partition with unique codewords for

each node.
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100

101

110
0 100 1 111

L = 2.45 bits

sender: 0 00 101 01 11 100 1 0 100 0 110 (22 bits)

(b) A modular partition with unique codewords for

nodes within modules.

Figure 1: Coding example for a small network with eight nodes and two communities. (a) In
the one-level partition where each node has a unique codeword, the codelength is 2.81 bits.
(b) In a modular partition, the codelength is reduced because codewords can be re-used

between modules, reducing the codelength to 2.45 bits.

� The map equation is an information-theoretic objective function for
community detection

� It measures the quality of a network partition by relating it to the lower
bound of the average per-step description length for a random walk

� A network partition corresponds to a modular coding scheme, based on a
Huffman code

Map Equation Centrality
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100
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Lu = 2.25 bits

sender: 0 00 101 01 11 100 1 100 110 (20 bits)

(a) Using the same coding scheme as before, but

without using the codeword for the node shown as a

circle.
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Lu∗ = 2.05 bits

sender: 0 00 101 01 11 100 1 00 10 (18 bits)

(b) Designing a new coding scheme where the node

shown as a circle has no codeword.

Figure 2: Effect of silencing a node, that is, not encoding for random-walker steps to the
respective node. (a) Using the same coding scheme, but simply omitting the node shown as a
circle from the random walk’s description. This is inefficient because the codeword assigned to
the node is never used. (b) Designing a new coding scheme that does not assign a codeword

to the node shown as a circle. The rest of the nodes receive shorter codewords.

� To measure node importance, we consider by how much more the random
walk’s description can be compressed if the node was not present

� By not assigning a codeword to a node, on average, the rest of the nodes
can receive shorter codewords

� Essentially, a node’s importance is the effective marginal harm it causes to
other nodes by its existence

Results

� We have tested Map Equation Centrality on a set of online social networks
and compared it with other community-aware centrality measures

� To measure the performance of centrality scores, we test how well they
identify nodes with high spreading power

� Spreading power is the expected number of nodes that get infected in an
SIR disease spreading model where the disease starts at the node in
question, and nodes recover after 1 time step

Results

Table 1: List of networks and their properties: number of nodes (N), number of links (|E |),
number of communities as detected with infomap (M), mixing (µ), and epidemic threshold (λ).

Network N |E | M µ λ

facebook friends 329 1,954 20 0.127 0.048
Copenhagen 800 6,429 36 0.502 0.038
Uni email 1,133 5,452 52 0.402 0.057

Ego facebook 4,039 88,234 74 0.082 0.009
facebook org. 5,524 94,219 48 0.352 0.016
Physics collab. 8,798 27,416 863 0.279 0.066
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Figure 3: Results for three community-aware centrality scores as well as standard PageRank on
six online social networks.

� In general, Map Equation Centrality outperforms the other
community-aware centrality measures

� However, it is no silver bullet: on the physics collaborations network, the
other measures, including PageRank perform better

Conclusion

� We derived a community-aware centrality score from the map equation to
measure node importance in modular networks

� In most cases we tested, Map Equation Centrality outperforms other
centrality measures
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Biological systems are very complex due to the nature of their regulation and the sheer amount of  
interconnected components present in even the simplest of organisms. To properly understand and 
fully quantify these systems, thousands and thousands of experiments have to be made; A herculean 
effort that would  take decades of work to achieve with conventional methods. Previously a robot  
scientist was employed in implementing iterative closed cycles of experimentation and model  
improvement to semi-autonomously generate new knowledge about a biological phenomenon in  
S. cerevisiae, the diauxic shift. 
This project aims to extend the original work by adding additional robustness and biological context 
to the existing framework by introducing the integration of contextual biological data in the form of 
untargeted metabolomics to further characterize the shift.

High-throughput metabolomics for the characterization and validation of a 
regulatory diauxic shift model

AI MLX
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High-throughput metabolomics for the characterization
and validation of a regulatory diauxic shift model
Brunnsåker D¹, Reder GK¹, Tiukova IA¹, Soni NK¹, Gower A¹ & King RD¹²³

Background
Biological systems are very complex due to the nature of their regulation and the sheer amount of interconnected components present in even the simplest of
organisms. To properly understand and fully quantify these systems, thousands and thousands of experiments have to be made; A herculean effort that would
take decades of work to achieve with conventional methods. Previously a robot scientist was employed in implementing iterative closed cycles of
experimentation and model improvement to semi-autonomously generate new knowledge about a biological phenomenon in S. cerevisiae, the diauxic shift.
This project aims to extend the original work by adding additional robustness and biological context to the existing framework by introducing the integration of
contextual biological data in the form of untargeted metabolomics to further characterize the shift.

High throughput metabolomics

As the model was improved using only partial evidence on physiology and
prior knowledge of regulatory interactions, the biological relevance of the proposed
changes need to be validated with contextual biological data.

Reference dFBA simulations for use with model validation were performed using the
framework previously developed by Coutant et al. in which a model of control of
metabolism (iMM904) was constrained by simulated gene expression from a
regulatory model represented by a dynamic Bayesian network (DBN).

Closed-cycle model improvement
The complexity of biology necessitates a vast amount of explorative
experiments to map a eukaryotic system, a number even conventional
automated systems are incapable of handling. In order to meet this challenge,
the system needs autonomous control and the ability to form low-level
hypotheses and independently perform model revision.

This is done through stages of guided experiment selection and model
revision using both simulated and experimental data generated by a
automatic laboratory. The basis of experiment selection is through partial
evidence inference of gene expression using phenotypical measurements
along with co-regulatory patterns from regulatory networks acquired from
literature.

Model validation

To validate the model batch cultivations were performed in the automated laboratory
cell Eve on multiple regulatory deletion mutants from the EUROSCARF collection
along with their related reference strain (BY4741).

+

Cell signaling/
Regulation/
Metabolism

DBN/FBA/dFBA

Kullback-Leibler/
Inferred expression/
Co-regulatory patterns

Phenomics/
Metabolomics

The regulatory model is then refined through iterative edge removal using
minimized growth-curve differences between simulated and experimental
measurements as the objective function. Likewise, additional validation
metrics for model revision will help guide the process further.

GeneB (t)

GeneA (t)

GeneB (t+1)

GeneC (t)

GeneA (t+1)

GeneC (t+1)
[ [

Model revision/
Validation

The project makes use of an untargeted metabolomics platform in the form of FIA-MS
(flow injection analysis mass-spectrometry) to acquire biological measurements from
the cultivations generated by the automated laboratory cell. In order to achieve a
sufficiently high-throughput analysis, automated pipelines for metabolomics data
processing are used.

ΔΔppccll11
ΔΔooccaa11
ΔΔddlldd33
ΔΔmmeekk11
ΔΔrrttss33
ΔΔggaall1111
ΔΔffaaaa11
ΔΔrrmmee11
ΔΔttddaa11
ΔΔyyggrr006677cc

Identifying regulatory hotspots of metabolism by observing patterns in differentially
expressed metabolites allow for some elucidation regarding the metabolic perturbation of
regulatory gene deletion. Likewise, observing patterns and zones of differential fluxes using
the model allows for identification of affected parts of metabolism. Establishing the
similarities and dissimilarities between these can then guide model revision, allowing
for higher biological relevance and higher model fidelity.
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In this work, we investigate a novel neural network architecture for 2D point clouds, guaranteeing 
rotation equivariance and invariance to permutations of the points.

ZZ-net: A Universal Rotation Equivariant Architecture for 2D Point Clouds
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ZZ-net: A Universal Rotation Equivariant Architecture 
for 2D Point Clouds

Reference:
Bökman, Georg, Fredrik Kahl, and 
Axel Flinth. November 2021. 
‘ZZ-Net: A Universal Rotation Equivariant 
Architecture for 2D Point Clouds’ 
http://arxiv.org/abs/2111.15341.

There has been much recent work on 
group equivariance and group invariance 
of neural networks. Refer to the figure on 
the right for an example where the group 
is the rotation group in 2D. Equivariance 
means that when the input of the network 
is acted on by a group element, then the 
output is acted on by the same group 
element. Invariance means that the output 
of the network stays constant when the 
input is acted on by the group.
In this work, we investigate a novel neural 
network architecture for 2D point clouds, 
guaranteeing rotation equivariance and 
invariance to permutations of the points. 
Investigations have already been done on 
the 3D case and the general nD case. We 
find here that the ability to use complex 
numbers as representations for both the 
points and the rotations, makes the 2D 
case stand out and renders it possible for 
us to find a universality result for neural 
network architectures that we can’t easily 
generalize to higher dimensions.
There are three main ideas in the paper. 
First, we discuss how rotation equivariant, 
permutation invariant functions can be 
decomposed into a sum of evaluations of a 
rotation invariant function – see the 
“Flavour of the results” to the right. 
Second, we explain a way to approximate 
this decomposition with neural networks 
and prove the approximation to be 
universal. Third, we describe how to apply 
our framework to the case of an input of 
correspondences between two point 
clouds. To illustrate the last idea, we 
perform experiments on the estimation of 
essential matrices in stereo vision and find 
that our framework outperforms state of 
the art methods when the test data 
contains rotations unseen in the training 
data.
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Probabilistic program languages (PPLs) provide tools to write a model and do statistical inference on 
the model ideally without considering the internals of the inference algorithm. While simulation is 
the strong aspect of the Monte Carlo methods in PPLs to generate samples, it needs to be done in a 
smart way such that the variance of the sampler reduces in a computationally feasible time. Especially, 
the models, having high number of random variables, require manual transformation of the model to 
get an efficient sampler. The aim of this research is to automatically analyse and transform the model 
given by the user to a more efficient equivalent representation using analytical relations between ran-
dom variables in compile time.

Automatic Static transformation of Probabilistic Programs
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Automatic Static Transformations of Probabilistic Programs
Gizem Caylak, KTH Royal Institute of Technology

Department of Computer Science
Main Advisor: David Broman

Probabilistic program languages (PPLs) provide tools to write models and do statistical inference on the model ideally without 
considering the internals of the inference algorithm. While simulation is an important aspect of Monte Carlo methods in PPLs to generate 
samples, it needs to be done in a effective way that the variance of the sampler reduces in a computationally feasible time. Especially, 
the problem is that models, which have high number of random variables, require manual transformations to get an efficient sampler. 
The aim of this research is to automatically analyze and transform the model given by the user to a more efficient equivalent 
representation. We use analytical relations between random variables at compile-time in transformations.

Method

References
1. Murray, L., Lundén, D., Kudlicka, J., Broman, D. &amp; 

Schön, T. (2018). Delayed Sampling and Automatic Rao-
Blackwellization of Probabilistic Programs. Proceedings of the 
Twenty-First International Conference on Artificial Intelligence
and Statistics, in Proceedings of Machine Learning Research
84:1037-1046

Abstract

Transformations

Static Analyzer
Creates a Programmatic Bayesian Network (PBN)
from the probabilistic program. Vertices
are either random variables or code blocks and
edges represent the dependency between vertices.

Transformer
Takes the PBN as input and uses conjugate prior
relationships between random variables to derive the
posterior. We guarantee that the transformation is
conservative, always producing a correct program.

Re-constructor
Takes the transformed PBN and reconstructs
the probabilistic program.

Main Contributions
- We extend the concept of Bayesian Networks (BN) and define a

new kind of graph called Programmatic Bayesian Networks
(PBN). A PBN encapsulates random variables and the code
structures in a probabilistic program as well as reconstructing a
probabilistic program from a PBN.

- We transform the PBN based on analytical relations, such as
conjugate prior relations, between the model parameters.

- All steps are done automatically at compile time.
- We implement this method in the meta language framework

Miking and demonstrate the efficiency of our algorithm on non-
trivial models such as LDA

1 let x = assume (Beta 5.0 5.0) in
2 let obs = true in
3 observe obs (Bernoulli x); 
4 x

1 let x = assume (Beta 6.0 5.0) in
2 x

We use conjugate prior relations between random variables to
derive the posterior hyperparameters. This gives a closed-form
expression for the posterior.

Example: A simple coin toss mode

Limitations and work in progress
- Since the transformation is conservative, it may not output a

more efficient representation, e.g. in stochastic branching, it
may not capture different relations discovered between
random variables.

Posterior PriorLikelihood

Research Problem
PPLs provide an expressive interface to represent probabilistic
models ideally without dealing with the inference. However,
making the sampler efficient requires manual transformation of the
model. Run-time algorithms, such as Delayed Sampling [1], are
suggested to do the transformation automatically. To reduce the
run-time overhead, we propose an algorithm to do the
transformation automatically at compile time.

P(x) ∼ Beta(5,5)

P(Y |x) ∼ Bernoulli(x)

P(x |Y = true) ∼ ?

Random Variable

Code Block
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Embedding nodes in a large graph using vectors but most solutions rely on optimizing embedded 
representations. This yields problems; adding new nodes require re-training the embeddings, and 
training is costly and time-consuming. To mitigate this, we propose a simple, static and lossy way 
of compressing and representing higher-order connections in a network. We make use of Random 
Indexing, embedding the nodes through static vectors in a euclidean vector space using aggregation 
methods, showing a performance increase in comparison to baselines, needing less dimensions for 
more expressivity.

Dimensionality reduction for Attributed Graphs (on-going work)

AI MLX
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Introduction

Future work

Acknowledgements

Embedding nodes in a large graph using vectors but most solutions 
rely on optimizing embedded representations. This yields problems:
• Adding new nodes require re-training the embeddings
• Training is costly and time-consuming

We propose:
• A simple, static and lossy way of compressing and representing

higher-order connections in a network. 
• We make use of Random Indexing, embedding the nodes

through static vectors in a euclidean vector space

Two methods:
• Linear Graph Neural Network aggregation (RIA)
• Build up vectors from random walks (RI + Random Walks)

• Test features’ quality when
combined with a Graph Neural 
Network (GNN)

• Can be useful to initialize
representations when graphs have
binary or no attributes

• Initial experiments show up to an 
80 % reduction of parameters with
slight performance decrease

Data
Five benchmark datasets; citation & social networks

Link prediction
• We beat our baselines in all cases
• Embedding higher order neighborhood is crucial

Results

Method

This work was partially supported by Wallenberg Autonomous Systems 
Program (WASP).

1 QUINT: Node embedding using network hashing. arXiv preprint arxiv:2109.04206, 2021. 

Empirical investigation2

1. Embed the graphs using our methods
2. Evaluate using linear regression on the 

embeddings using node and link
prediction

Node classification experiments. Our method is superior to our baselines in most cases

Filip Cornell
KTH Royal Institute of Technology & Gavagai

Random hyperparameter search
For all methods, perform a 
hyperparameter search

Baselines:
• QUINT1 – recent hashing method

baselines
• Attributes only (binary one-hot 

encodings)

Link prediction. We beat our baselines in all cases

Train Dev Test

Dimensionality reduction for Attributed Graphs (on-going work)

Hyperparameter 
search

Fitting

Predictions

Linear regression

Experiment pipeline

Datasets: Citation & social 
networks

• Our method needs less 
dimensions to produce better
results than other hashing
methods -> higher expressiveness

Embed graphs

Fit GNN

Predictions

Future pipeline
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Training a language model only on textual data does not give the model a comprehensive understan-
ding of the world. One way to amend this and make more capable models is to train them on more 
modalities, for example, images. There is also a vast literature on video grounding, which usually 
means further training (most of the times transformer-based) language models on videos and their 
captions. Training on videos is usually more expensive than images and requires 3D convnet enco-
ders, which raises the question, how does it benefit a language model? In this work, we try to investi-
gate this further and see if grounding in videos improves model’s understanding of actions (verbs) and 
objects (nouns), over only text, text and images, and possibly sparsely sampled video frames.

Verb Understanding in Video Grounded Language Models
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DoesGrounding inVideosHelpwithVerbUnderstanding?
Ehsan Doostmohammadi, Linköping University

Department of Computer and Information Science
Supervisors: Marco Kuhlmann (LiU) and Richard Johansson (Chalmers)

What is Grounding?

Grounding is defined as “Learning language representations from explicit visual associations” (Sileo, 2021), which basically means using other knowledge
sources (e.g., images or knowledge graphs) in addition to text for training language models. We expect such models to perform better in some aspects and
have a better understanding (?) of the world.

Grounding in Videos; How Does it Help?

Have you seen those perfect pictures in image-caption datasets that are
self-contained and obvious? Unfortunately, the world is not that perfect.
Can you guess what is being added in the left picture and what they are
doing in the right one?

Or what are they doing in this one? Should you plug in before doing a
certain task or unplug? In this case, the information is available in text,
but that is not always the case.

Ideally, one would create a dataset (maybe similar to Hendricks et al.,
2021) and be done with it. But creating datasets is expensive and even
more complicated for videos.

Imageability

As it is not currently feasible to create a dataset, we rely on a body of work
in psychology about an easy-to-grasp concept called imageability (Bird et
al., 2001). Words like “(to) walk” and “(a) wasp” are more imageable
than “(to) think” and “jealousy”.
We hypothesize that a language model that is grounded in videos will
perdict highly imageable words more accurately than less imageable ones
and also compared to a model that is not grounded.

Data

We need video data paralleled with text, such as video captions. But
such datasets are expensive to create and small in size. Therefore we
use Howto100m dataset, which is a large-scale dataset of narrated in-
structional videos (Miech et al., 2019). As this dataset is automatically
collected, there is a considerable amount of noise in it, which is partly
compensated by the sheer size of it, ∼12 TB.

How to train such a model?

We used a pretrained distil-BERT language model and fine-tuned on par-
allel video-text data. Random words and video inputs are masked and
the model learns to predict them. Additionally, the text and video in
some random training samples are not aligned and the model is trained to
distinguish them. For more details see VideoBERT (Sun et al., 2019).

Preliminary Results

We train the language model as described above and test it on a held-
out test set of 5 thousand videos. The words that are available in the
Bird dataset are masked for the model to predict them. Only words with
high and low imageablity are kept, as interpreting the results on medium
imageability would be difficult.

Train/Test Img. Acc. (∆) V. Acc. (∆) N. Acc. (∆)

T/T Low 34.3 35.7 24.0
High 16.8 17.5 16.6

TV/TV Low 33.7 (-0.6) 35.0 (-0.7) 23.7 (-0.3)
High 17.7 (0.9) 18.9 (1.4) 17.2 (0.6)

TV/T Low 34.1 (-0.2) 35.5 (0.2) 24.0 (0.0)
High 17.1 (0.3) 18.0 (0.5) 16.7 (0.1)

In the first column, T stands for text and V for video. In the first row, Acc.
is accuracy, V. is verb, and N. stands for noun. Delta is the difference
between that cell and the corresponding cell in the T/T row.

The results show 1.4% increase in the accuracy when we train on
videos and text, and test on both. When only testing on text, we
see a 0.5% increase for the highly imageable words. The results
also show that there is a higher increase for verbs compared to
nouns.

What’s next?

Train a better model, test on high quality data, such as QueryD (Oncescu
et al., 2021) (as only 50% of the text is refering to an object/action in
the scene in Howto100m), and analyze and interpret the results.
Have any qustion? Don’t hesitate to contact me:
ehsan.doostmohammadi@liu.se :)

References

• Bird, Helen, Sue Franklin, and David Howard. "Age of acquisition and imageability ratings
for a large set of words, including verbs and function words." Behavior Research Methods,
Instruments, & Computers 33.1 (2001): 73-79.

• Hendricks, Lisa Anne and Aida Nematzadeh. “Probing Image-Language Transformers for
Verb Understanding.” FINDINGS (2021).

• Miech, Antoine, et al. "Howto100m: Learning a text-video embedding by watching hundred
million narrated video clips." Proceedings of the IEEE/CVF International Conference on
Computer Vision. 2019.

• Sileo, Damien. "Visual Grounding Strategies for Text-Only Natural Language Processing."
Proceedings of the Third Workshop on Beyond Vision and LANguage: inTEgrating Real-
world kNowledge (LANTERN). 2021.

• Sun, Chen, et al. "Videobert: A joint model for video and language representation learning."
Proceedings of the IEEE/CVF International Conference on Computer Vision. 2019.

• A. -M. Oncescu, et al., "QUERYD: A Video Dataset with High-Quality Text and Audio
Narrations," ICASSP 2021 - 2021 ICASSP, 2021, pp. 2265-2269.

41 B

Doostmohammadi, Ehsan
Linköping University

AI MLX



Drexler, Dominik
Linköping University

42 APage

We learn compact and reusable control knowledge as representations of a target language. The con-
trol knowledge captures the subgoal structure in a planning domain. We can formally prove that the 
learned representations can be used to solve any instance from the domain efficiently. In this setting, 
we are restricted to tractable domains. Those are domains, where it is easy to find a suboptimal solu-
tion. We address the learning problem using answer set programming. We present some results of the 
learning and directions for future work.

Learning Language-Based Representations for Efficient and Intelligent Acting
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Motivation & Research Goals

• Learn reusable control knowledge for intelligent acting

• Learned target is language representation that

– is compact and simple
– represents the subgoal structure
– generalizes over target class Q of planning problems
– can be used to solve any problem P ∈ Q efficiently

• Goals in future work: scalability, learn hierarchies, learn from arbitrary inputs

Methods

Classical Planning Problem.

• Given: A planning problem P models a world and consists of

– Domain D, i.e., Predicates over objects, Actions over predicates
– Instance information, i.e, sets of literals made from ground atoms

over predicates and objects:

∗ Fully observable initial state I

∗ Goal description G

• Objective: find action sequence that leads from I to G

Width.

• Width w(P ) measures difficulty of problem P

• Theorem: If w(P ) ≤ k then IW (k) algorithm solves P in time exp(k)

Serialization & Policy Sketches.

• Policy sketch RΦ is set of rules of form C �→ E over state features Φ

• RΦ defines subgoals in P ∈ Q over common domain

• RΦ decomposes P ∈ Q into subproblems

• Sketch width wRΦ
(Q) is largest width of any subproblem in all P ∈ Q

• Serialization SIW RΦ : search greedily to closest subgoal and repeat

• Theorem: if wRΦ
(Q) ≤ k then SIW RΦ

solves P ∈ Q in time exp(k)

Learning Sketches.

• As combinatorial optimization problem: answer set programming

• Unsupervised from example problems P1, . . . , Pn

• Input parameter k ∈ N0 controls difficulty of subproblems

• Current limitations: tractable domains, scalability, requires PDDL like
inputs

Selected Results

Gripper. An agent must move all balls from room a to room b.

Room a Room b

Agent
ball1

ball2

ball3

Consider features Φ = {ga, gb} where

• ga is number of balls in room a

• gb is number of balls in room b

The learned width-2 sketch R2 over features {gb} is

r = {} �→ {gb↑}

• r: increasing number of balls in room b (gb↑) is good

The learned width-1 sketch R1 over features {ga, gb} is

r1 = {} �→ {ga↓, gb?}
r2 = {} �→ {gb↑}

• r1: decreasing number of balls in room a (ga↓) and arbitrarily changing
number of balls in room b (gb?) is good

• r2: increasing number of balls in room b (gb↑) and keeping number of
balls in room a the same (no effect) is good

Experimental Results.
w = 1 LAMA BFWS

Domain S T AW MW S T S T

Blocks-clear (30) 30 3 0.78 1 30 4 30 8
Blocks-on (30) 30 36 1.00 1 30 4 30 52
Childsnack (30) 30 4 0.11 1 9 3 4 10
Delivery (30) 30 1 1.00 1 30 3 30 2
Gripper (30) 30 5 0.50 1 30 3 30 7
Miconic (30) 30 140 0.54 1 30 7 30 28
Reward (30) 30 3 1.00 1 30 3 30 4
Spanner (30) 30 1 0.25 1 0 – 0 –
Visitall (30) 30 1687 0.01 1 29 507 18 113
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For small and medium-sized enterprises collaborative robots represent a possible way to improve their 
manufacturing practices. Yet, programming such a robot to perform many different and complicated 
tasks poses a problem even for a skilled operator - this is a hurdle for enterprises. We present our  
approach to tackling this problem with machine learning and classic AI. We showcase contributions 
and results from one published paper, which improves robot simulations. Last, we present current 
work in progress.

Robot Skill Learning based on Interactively Acquired  
Knowledge-based Models
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Robot simulations can have large errors in force and 

moment output but these errors can be corrected 

with a neural network architecture based on LSTM

Robot Skill Learning based on Interactively Acquired 

Knowledge-based Models

Alexander Dürr, Lund University - LTH

Robotics and Semantic Systems

Main advisor: Elin Anna Topp
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We learn compact and reusable control knowledge as representations of a target language. The con-
trol knowledge captures the subgoal structure in a planning domain. We can formally prove that the 
learned representations can be used to solve any instance from the domain efficiently. In this setting, 
we are restricted to tractable domains. Those are domains, where it is easy to find a suboptimal solu-
tion. We address the learning problem using answer set programming. We present some results of the 
learning and directions for future work.
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Learning Pareto-Efficient Decisions with
Confidence

Sofia Ek, Dave Zachariah, Petre Stoica
Uppsala University, Sweden

Introduction

� Interested in problems where the objective functions are unknown but we have access to data
from past outcomes of decisions. The goal is to balance trade-offs between several outcome
objectives using Pareto-efficiency.
� Decision x is Pareto-efficient if it is not strictly dominated by any alternative decision x′.
� Efficient decisions Xα form a ‘Pareto-frontier’ Yα in reward space.

Main features of proposed method:
� Considers the lower tail rewards at any specified level.
� Provides finite-sample coverage guarantees for the rewards even when the

data-generating process is unknown.
� Enables the study of decision trade-offs using a Pareto-frontier that takes

reward uncertainties into account.
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Figure: (a) Illustration of efficient decisions Xα = {1, 3, 4, 5, 7} shown as solid green dots. Decisions 2 and 6 (red
crosses) are thus strictly dominated. (b) Decision x = 0 and its corresponding outcome rewards y1 and y2.

Problem Formulation

We have observed data D =
{
(xi, yi, zi)

}n
i=1, where:

� x ∈ {0, 1, 2, . . . } are discrete decisions (treatments) in a space X .
� y are reward vectors (utility/negative loss) in a reward space Y ⊂ Rm. The number m is typically

small, the examples here illustrate cases with m = 2 rewards.
� z are d-dimensional covariate vectors representing decisions taken in different contexts.

Goal: Learn covariate-specific efficient decisions Xα(z) and the corresponding ‘Pareto-frontier’
Yα(z) in reward space that lower bounds random rewards with a high probability of at least 1− α:

P
(
yα(x, z) � y | x

)
≥ 1− α, ∀x ∈ X . (1)

If a nontrivial bound can be found, we use it to define efficient decisions that take into account the
uncertainty of outcome. We also consider a covariate shift, i.e. the training distribution p̃(x, y, z) is
not the same as the testing distribution p(x, y, z).

Method

We want to ensure (1) . Using the union-bound, we have that:

P
(
∪m

k=1 yk < yα
k (x, z) | x

)
≤

m∑
k=1

P(yk < yα
k (x, z) | x).

Building upon the ‘weighted conformal quantile regression’ method [4, 3, 2], we construct yα
k such

that:
P(yk < yα

k (x, z)|x) ≤
α

m
∀k,

given p(z|x). This ensures that (1) is satisfied. The conditional quantile function of an individual
continuous reward y can be expressed as:

qα(x, z) = inf

{
ỹ :

α

m
= P(y < ỹ | x, z)

}
.

This quantity is unknown and q̂α(x, z) is estimated from data using any flexible machine learning
method. Determine an adjustment variable κα(x) and form:

yα(x, z) := q̂α(x, z) − κα(x).

The adjustment variable is needed to guarantee coverage in finite samples, but should also be
weighted to take distributional shift into account

p̃(x, y, z) = p(z)p(x|z)p(y|x, z), p(x, y, z) = p(z)�(x = x∗)p(y|x, z),
using weights w(x, z) that must be estimated when the past decision policy is unknown.

Synthetic Data

One-dimensional covariate z ∼ N (60, 100). Five decision alternatives X = {0, 1, 2, 3, 4}. The
rewards y are drawn as: 


y1 = ax + bxf

(
z−55
9

)
+ u0,

y2 = cx + dxf
(

z−50
8

)
+ u1,

where f (·) is the sigmoid function, a, b, c, d are constants and u0, u1 are noise terms. We create an
unbalanced scenario where some of the decisions x are rare and learn a (two-component) Gaussian
mixture model of p(z|x) in:

w(x, z) =
�(x = x∗)

p(x|z)
=

�(x = x∗)

p(z|x)p(x)
∑
x′∈X

p(z|x′)p(x′).

Results: Synthetic Data
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Figure: Efficient decisions with confidence 80% for two different contextual covariates (a) and (b). In (b) there was no
data for decision x = 4 and the method adapts by setting the minimum possible reward as a boundary (a black star). The
dashed lines illustrate the frontiers Yα(z) for each context.
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Figure: Evaluation of reward boundary yα(x, z) using 500 Monte Carlo simulations. (a) Experimental data scenario with
known random assignment probabilities p(x). (b) Observational data scenario where p(z|x) is estimated.

Semi-real Data

� Teachers and students randomly assigned into:
� Small class size: 13 to 17 students per teacher,
� Regular class size: 22 to 25 students per teacher,
� Regular-with-aide class size: 22 to 25 students per teacher plus a full-time teacher assistant.

� The study was a randomized controlled trial, with interventions assigned by a given random policy
p(x).

� Outcome y1 is an achievement test score (the sum of standardized math, reading and listening
test scores).

� Outcome y2, is a non-linear generated value [1] and could correspond to a (negative) cost per
student.
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Figure: Frontiers Yα(z) for student groups with two different sets of covariates (a) and (b) and learned from real data
with three different class size interventions. Confidence level 80%.

Conclusions

In this work we extended the concept of Pareto-efficiency to include statistical confidence. We
propose a method that learns efficient decisions and a frontier that takes into account the lower tail
rewards at any specified confidence level. Such a frontier can quantify trade-offs and provide
valuable insight to decision makers due to its finite-sample statistical guarantees.
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Prior works have found it beneficial to combine provably noise-robust loss functions e.g., mean 
absolute error (MAE) with standard categorical loss function e.g. cross entropy (CE) to improve their 
learnability. Here, we propose to use Jensen-Shannon divergence as a noise-robust loss function and 
show that it interestingly interpolate between CE and MAE with a controllable mixing parameter. 
Furthermore, we make a crucial observation that CE exhibit lower consistency around noisy data 
points. Based on this observation, we adopt a generalized version of the Jensen-Shannon divergence 
for multiple distributions to encourage consistency around data points. Using this loss function, we 
show state-of-the-art results on both synthetic (CIFAR), and real-world (e.g., WebVision) noise with 
varying noise rates.

Generalized Jensen-Shannon Divergence Loss for Learning with Noisy Labels

AI MLX



Page

Generalized Jensen-Shannon Divergence Loss for Learning with Noisy Labels
Erik Englesson, Hossein Azizpour

5. Results: Synthetic Noise - CIFAR-10 & CIFAR-100

6. Results: Real-World Noise - WebVision
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Augmented Training Sample Network Class Prediction
✔

Original Training Sample Network Class Prediction

1. Jensen-Shannon Loss Generalizes CE and MAE

2. Learning with Label-Noise Reduces Consistency (CE)

Label-dependent term Consistency term

One-hot label

Predictive distributions 
of augmented versions of 
the sample
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For sequential decision-making problems such as autonomous driving it is imperative to consider the 
full range of outcomes as they might range from arriving to a location faster than expected, to being 
part of a catastrophic crash. In particular, we are mostly concerned with the left-tail properties of the 
distribution of outcomes.
By devising risk-aware agents that focus on performance in the worst outcomes, we can arrive at safer 
decision-makers.

Safe Decision-Making for Autonomous Driving
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Abstract

For sequential decision-making problems such as
autonomous driving it is imperative to consider
the full range of outcomes as they might range
from arriving to a location faster than expected,
to being part of a catastrophic crash. In partic-
ular, we are mostly concerned with the left-tail
properties of the distribution of outcomes.
By devising risk-aware agents that focus on per-
formance in the worst outcomes, we can arrive at
safer decision-makers.

Paper I: Epistemic Risk-sensitive
Reinforcement Learning

In this work we studied the concept of epistemic
risk, that is the risk that arises due to uncertainty
about the model parameters µ. Typically this situ-
ation occurs when we have a belief over MDPs ξ(µ)
and we want to optimize for a risk-sensitive objec-
tive w.r.t. the uncertainty due to ξ.
The main contributions were defining an entropic
risk measure for epistemic risk and the delivery
of two algorithms, one based on Approximate
Dynamic Programming and one based on
Bayesian policy gradient.

πE(U) = arg max
π

1
β

logE
(

exp(βR)
)

. (1)

Eq. 1. defines the objective over the utility func-
tion mirroring an entropic risk measure with some
nice properties. By also considering the uncertainty
induced by ξ we can arrive at the full objective in
Eq. 2., by replacing U with the considered utility
function in Eq. 1.

πE(U, ξ) ≜ arg max
π

∫

M
U(Eπ

µ[R]) dξ(µ). (2)

SENTINEL Schematic
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Figure: Overview of the model structure of the SENTINEL work.

Paper II: Inferential Induction: A
Novel Framework for Bayesian

Reinforcement Learning

In this work we introduced a novel Bayesian Re-
inforcement Learning framework that correctly in-
fers value function distributions from data. From
this framework, depending on what you marginal-
ize over, gives arise to a whole new class of BRL
algorithms. In particular, we develop and demon-
strate comparable to state-of-the-art performance of
Bayesian Backwards Induction.

Pπ
β(Vi | D) =

∫

V
Pπ

β(Vi | Vi+1, D) dPπ
β(Vi+1 | D). (3)

Paper III: SENTINEL: Taming
Uncertainty with Ensemble-based

Distributional Reinforcement
Learning

In SENTINEL, we study a novel kind of risk mea-
sure, in this work termed composite risk, which
combines both the risk due to aleatory uncertainty
and the risk due to epistemic uncertainty into one
risk measure. We prove that this new risk measure
better estimates the total risk than one that consid-
ers both risks separately.

Comp. Risk ≜
∫

Θ

∫

Z
Z d(UA

α1
◦Pr)(Z|θ) d(UE

α2
◦β)(θ)

(4)
Further, we demonstrate how to design an agent that
optimizes for this risk, using distribution estimators,
as seen in the above schematic.

Paper IV: In progress Transfer
Reinforcement Learning with Risk

In an ongoing work we are considering techniques
that leverage knowledge transfer from a set of source
domains to a target domain. This setting is inter-
esting when you for instance have a task that you
know how to solve and you now want to solve a dif-
ferent task but with similar structure. For instance,
knowing how to drive in Europe should inform you
to some extent how to drive in the US, but there
are some differences, namely traffic rules, road signs
and road behavior.

µ1

µ2

µ3

µ4

µ5

C(Ms)

Type I

Type III

Type VI

Figure: Overview some of the types of settings that may arise
in Transfer Reinforcement Learning.

In particular, we consider three kinds of structures
over model space. The first, which gives arise to
Type I, assumes the target MDP µt is part of
the finite set of source MDPs Ms. The second,
Type III, which considers the convex set of source
MDPs C(Ms), searches for the best representative
µ̂t ∈ C(Ms). Finally, the last type of structure is
the general case where the target MDP can be ar-
bitrarily different from the source MDPs. In that
case, you are studying problems of Type V.

Acknowledgements

I want to thank all my co-authors and the peo-
ple I have worked with, some of these are, Emilio
Jorge, Divya Grover, Debabrota Basu, Tommy
Tram, Christos Dimitrakakis, Mina Ali-Beigi Nabi,
Aristide Tossou.



Faridghasemnia, Mohamadreza
Örebro University

47 APage

When a person talks to a robot about an object in the environment, the robot has to find which object 
the person is talking about. Symbol grounding is the task of finding a link between a word and one 
of the observed objects. It is a complex task: What information the robot can perceive (language and 
vision)? What links exist between language and vision? What links exist between the objects that can 
help symbol grounding? In (1) we build a platform with a Pepper robot that can see, listen, and talk 
about objects that it can see, and save this information. In (2) we extended (1) and assumed that the 
user wants to ground objects implicitly. In (3) we discuss a better vision model,  that is not limited to 
recognizing the category of objects.

Robot Learning of Symbol Grounding in Multiple Contexts Through Dialog

AI MLX
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A brief outline

When a person talks to a robot about an object in the environment, the robot has to find which object the
person is talking about. Symbol grounding: The task of finding a link between a word and one of the
observed objects. It is a complex task: What information the robot can perceive (language and vision)?
What links exist between language and vision? What links exist between the objects that can help symbol
grounding? In 1. we build a platform with a Pepper robot that can see, listen, and talk about objects that
it can see, and save this information. In 2. we extended (1) and assumed that the user wants to ground to
objects implicitly. In (3) we discuss a better vision model, that is not limited to recognizing the category
of objects.

(1). Extract information from language and vision

Audio Speech Recognition: Audio signal to phrase.
Semantic mapping: Extract frame and frame element of language.
Vision: Extract object categories in the image.
AIML: Handling general dialog.
Manager: Holds detected object, Holds information from Semantic map-
ping module, Generate an utterance to confirm the user input
Manager works with symbols, while symbols are generated from applying
deep neural networks on sensory inputs.

(2). Relationships that help symbol grounding

Ground to an object that is green and belongs to Mary. We have a mug
that is green and kitchenware, a mug that is white and kitchenware, a
scissor that is black, kitchenware, and belongs to Mary, and a ball and a
car that are toys and are for Tom.

Scene

User
EAV 

model 
of the 
sceneImage 

Processing

Natural 
Language 
Processing

Knowledge 
Engineering

Abstract 
relations 
between 
objects

Human

Hello.

Robot

Hi there!
the white mug on the table

I see, the white mug is on the table
i guess it is for mary

Got it! it belongs to mary
its label is kitchenware

Ok, I save it as kitchenware

EAV data:
mug(object001)
white(color001)
on− table(position001)
kitchenware(label001)
1.0 :: mary(object001, color001, position001, label001)
0.0 :: john(object001, color001, position001, label001)
To: mary(A,B,C,D, ...) : −kitchenware(C)

(3). Extracting rich information from vision

The vision model was a deep Neural network object detector, and colors
were recognized from RGB values. Why not a smarter vision model?
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Today, treatment planning for radiotherapy involves several tedious and time-consuming tasks such 
as the segmentation of tumors in an MR image. Automating these tasks using machine learning could 
make radiotherapy substantially more cost-effective. Here, complications arise in cases where patient 
data must be stored locally at the clinic for privacy reasons. We investigate federated learning as a so-
lution to learn a global privacy-preserving model. Aside from data storage requirements, we also aim 
for learning algorithms that satisfy statistical notions of privacy, adapt to local differences in clinical 
practice and continuously update the global model efficiently.

Federated Learning for Smart Radiotherapy Systems

AI MLX



Page 48 B

Fay, Dominik
KTH

AI MLX



Fredin Haslum, Johan
KTH

49 APage

Developing new drugs is a long and costly process, both in terms of time and resources. Early stages of 
the process include High Throughput Screenings (HTS), probing the effects of hundreds of thousand 
or millions of compounds, on the target of interest. Predicting the outcome of such experiments could 
speed-up the drug discovery process and provide new insight into the underlying biological processes. 
Phenotypic screening data could potentially provide a high-resolution method for characterizing such 
compounds. In this work we explore the use of phenotypic screening data for predicting compound 
bioactivity. Our results indicate that the data captures information that can be linked to activity in 
a wide variety of assay targets, as well as information directly related to the underlying biology by 
confirming predictive performance across assay and target types as well as validating the predictive 
performance across assays.

Exploring the use of Phenotypic Screening data for Bioactivity Prediction

AI MLX
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Developing new drugs is a long and costly process, both in terms of time and resources. Early stages of the process include High Throughput 
Screenings (HTS), probing the effects of hundreds of thousand or even millions of compounds, on the target of interest. Predicting the outcome of 
such experiments could speed-up the drug discovery process and provide new insight into the underlying biological processes. Phenotypic screening 
data could potentially provide a high-resolution method for characterizing such compounds. In this work we explore the use of phenotypic screening 
data for predicting compound bioactivity. Our results indicate that the data captures information that can be linked to activity in a wide variety of 
assay targets, as well as information directly related to the underlying biology by confirming predictive performance across assay and target types as 
well as validating the predictive performance across assays focused on the same target.

Problem
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Exploring the use of Phenotypic Screening data for Bioactivity Prediction 

Predicting Bioactivity over 140 different assays using Cell Painting
images as input. 6-fold cross validation gives an average ROC-AUC
prediction score of 0.744. With a majority (71%) of assays being
predicted with a ROC-AUC above 0.7. Indicating that information
relevant for assay activity prediction is captured in the Cell Painting
images and that our network is able to recognize it.

Screening compounds according to the models ranking, significantly
enriches the number of actives identified. Yielding a much higher HIT-
rate than expected by randomly sampling the compounds, but also
better than competing methods using compound structure (ECFP4 [4])
or Cell Profiler features [5] as input.

Beyond higher ROC-AUC performance, we show that Cell Painting
based predictions results in a more diverse set of compounds,
compared to structure based. With a Wilcoxon two-sided test of
structure diversity between the top ranked compounds in the test set
and the known hits from the training set, we find that there is a
significant difference between the two input modalities.

To further validate the performance of our model we also probe the
activity of the top ranked compounds in several follow-up assays,
meant to confirm the activity of each active compound under different
experimental conditions. Five different assays with varying targets and
model performances were selected and followed up in wet-lab
experiments. Showing similar results in HTS and wet-lab assays,
confirming that the network is capturing target relevant features when
predicting bioactivity and enriching the compound set.

Results
Identifying compounds active towards a target
of interest is an important step of early drug
discovery. High Throughput Screening (HTS)
Assays, are experiments focused on identifying
compounds with biological activity towards a
particular target and are designed in order to
efficiently screen millions of compounds.
Bioactivity Prediction is an attractive solution to
limit the number of experiments that needs to
be performed. Enabling the prioritization of
compounds with higher likeliness of activity.
Potentially reducing the size of such HTS
Screens.

~1022 

Chemical Space

~1,000
Primary hits (HTS)

~100
Validated hits

1
Drug

In vitro screening 
(SAR)

In vivo 
screening

~1,000,000
Initial HTS 

Method
Predicting compound bioactivity, based on
phenotypic screening data is an attractive
alternative to compound structure-based
approaches[4], due to it’s potential of capturing
a compound’s effect on a biologically system.
Previous work have shown that such data
contain information relevant for predicting
bioactivity in orthogonal assays [1,2]. In this
work we built a phenotypic screening dataset,
using the Cell Painting protocol [3] to generate
high resolution fluorescent microscopy images.
In effect characterizing compound by their
biological effect in a cell line and the
morphological changes it induces. Combined
with repurposed bioactivity readouts for a wide
range of compounds and targets. A CNN is
trained in a supervised multi-task manner to
predict bioactivity in multiple assay at once.
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… N ? N ? A ?

Historical
HTS 

Activity Data

Input modality Phenotypic
Deep Learning

Phenotypic
Cell Profiler

Structure Based,
ECFP4
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Predicting subject-specific brain aging can be used for improving the diagnosis and prognosis in 
neurodegenerative diseases. Previous approaches have been restricted to group-level predictions, or 
yielded unreal results. This study addresses these issues by proposing a novel method that generates 
synthetic MRI images of the brain to simulate its changes due to aging. The method is based on dif-
feomorphic image registration, which can provide more accurate and fidelity-controllable subject-le-
vel predictions.

Generative Aging of Brain Images with Diffeomorphic Registration

AI MLX
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Predicting subject-specific brain aging can be
used for improving the diagnosis and
prognosis in neurodegenerative diseases.
Previous approaches have been restricted to
group-level predictions [1], or yielded unreal
results [4]. This study addresses these issues
by proposing a novel method that generates
synthetic MRI images of the brain to simulate
its changes due to aging. The method is
based on diffeomorphic image registration,
which can provide more accurate and fidelity-
controllable subject-level predictions.

Research goals

Results

Diffeomorphic Registration:
• Diffeomorphic registration (DR) enjoys many advantages [2], such as

the learned deformation field are differentiable and invertible, and thus
preserve topology. According to [3], the contraction of the brain
structures shows a linear change in old age. This gives us theoretical
support to use the registration of two images at different ages to
simulate the changes in brain aging.

Architecture:
• As shown in the figure below, we used images acquired at different time

points from the same subject. The objective is to generate images in
between these two time points using the velocity field estimated through
deep learning-based diffeomorphic registration.

Two modules are introduced within the DR framework:

Method
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• Aging Generative Module (AGM) integrates the velocity
fields at different time steps to generate several deformation
fields that are used to generate the synthetic images.

• Quality Control Module (QCM) takes synthetic images
quality into consideration, leading to adjusting the stopping
point of the integration layer (s) in the AGM. It is possible to
extrapolate images by using s > 1.

Results show in the left figure:
• Twenty images were generated for this subject with

values of t between 0 and 2 (the moving image is at t=0).
Although t=1 should theoretically match the fixed image,
in practice it is not (t=1.8 in the example). The QCM
adjusts s with quality measurements to make the
generated images better correspond to chronological age.

Conclusions:
• As shown in the second row of the image, brain

deformations are increasing with time.
• The entire generation for an individual can be completed

in about five minutes using only CPU.
• We have generated synthetic images for three large-

scale longitudinal datasets so far.
Generative aging of one sample subject from the non-demented subset of 

the OASIS-3 dataset. The first row represents the generated images from 0 
to 2; the second row represents the corresponding deformation.
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Myocardial infarctions (MIs) are often missed in the emergency department. In managed settings 
deep learning models have shown promise in electrocardiogram (ECG) classification. However, in a 
real-world scenario there is a lack of high performing models for classification of MIs. We developed 
a ResNet-based deep neural network to classify the ECG between non-ST-elevation MI (NSTEMI), 
ST-elevation MI (STEMI), and control status in the more challenging real-world setting. In a test 
set, our model discriminates STEMIs/NSTEMIs with an AUROC of 0.99/0.83 and a Brier score of 
0.05/0.05. The model also generalizes well and obtains a similar performance on an additional test 
set collected in the months following the initial collection and that does not overlap temporally with 
the set used for developing the model. Our results are above human-level performance reported in 
previous studies for STEMIs and NSTEMIs.

ResNet-based ECG Diagnosis of Myocardial Infarction in the  
Emergency Department
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This work studies Semantic Scene Completion which aims to predict a 3D semantic segmentation
of our surroundings, even though some areas are occluded.
For this we construct a Bayesian Convolutional Neural Network (BCNN), which is not only able to 
perform the segmentation, but also predict model uncertainty.
This is an important feature not present in standard CNNs.
We show results for the Semantic Scene Completion task where a category is introduced at test time 
on the SUNCG dataset.
In this complex task the Bayesian approach outperforms the standard CNN, showing better  
Intersection over Union score and excels in mean Average Precision.
With the added benefit of having better calibrated scores and the ability to express model uncertainty.

In Depth Semantic Scene Completion

AI MLX
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Introduction

Semantic Scene Completion (SSC) is a challenging task
in which both visible and occluded surfaces are labeled se­
mantically in 3D. In Figure 1 we see an illustration of the
problem where a UAV would benefit from knowing what
to expect in occluded areas.

??

? ?

Figure 1: An UAV has some occluded areas in its surrounding and
would like to have an idea about what to expect.

Our contributions include:
• An open source system for BSSC using Variational Infer­
ence released on https://github.com/DavidGillsjo/
bssc-net.

• An extended SSC task on the SUNCG dataset with
more occluded space.

• Experiments showing that the Bayesian approach is
more robust to unseen data in the SSC task.

• Parameter studies on both MNIST and SUNCG.

Bayes by backprop

This method introduced by [1] is based on Variational In­
ference. Each weight in the network is sampled from a
normal distribution, as illustrated in Figure 2.
We estimate the posterior P(w|D) using a simpler model
q(w|θ) with learnable parameters θ, which minimizes the
approximate Kullback­Leibler (KL) divergence to the true
posterior.

θ∗ = argmin
θ

n∑
i=1

β

n

[
log q(w(i)|θ)− log P(w(i))

]
︸ ︷︷ ︸

Complexity

− log P(D|w(i))︸ ︷︷ ︸
Likelihood

.

where w(i) is a sample from the variational posterior
q(w(i)|θ). The scale factor β

n with β as design parameter
is introduced to tune the regularization.

(a) Standard (b) Bayesian

Figure 2: In 2a we see a filter bank from a standard 2D CNN, each
weight is a scalar. In 2b we see a filter bank in a Bayesian Variational
Inference 2D CNN, here each weight represented as a distribution
which is sampled from at inference time.

Prediction & Uncertainty

An unbiased estimation of the expectation is given [2] by

Eq(w|θ) [P(ŷ|x̂,w)] =
∫

q(w|θ)pt dw ≈ 1
T

T∑
t=1

pt,

where pt := P(ŷ|x̂,w(t)) is the softmax output from forward
pass t.
For uncertainty we use Predictive Entropy,

H = −
T∑
t=1

pt log pt.

For metrics we use mean Average Precision (mAP), Inter­
section over Union (IoU) for performance. For separation
metric we use the Bhattacharyya coefficient (BC)

BC(p, q) =
1
N

N∑
i=1

√
piqi,

where N is the number of categories, qi and pi are the num­
ber of TP and FN. Lower score indicates better separation.

Model

We have explored two network architectures. The first network ar­
chitecture is inspired by the original SUNCG article [3]. We call it
SSC­Net. The second architecture is a UNet. We chose softplus as
activation functions instead of relu to have more active weights in the
network [2]. The architecture is displayed in Figure 3.
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(b) SSC­Net

Figure 3: Architecture of SSC­Net used for MNIST and SUNCG experiments.
Conv(d, k, l) stands for a 3D convolution filter stack of depth d and kernel size k
and dilation l. Batch normalization and softplus activation is performed after every
Conv layer. Softmax in the final layer.
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MNIST Experiment

In Figure 4 we see output distributions fromMNIST test set for digits 0 and 1 when 0 is removed from the training
data. The Bayesian Score is more better calibrated and the Entropy is higher for 0.

(a) Deterministic (b) Deterministic Regularized (c) Bayesian Mean Score (d) Bayesian Entropy

Figure 4: Here we see true (blue) and false (orange) predictions for 0 and 1.

SUNCG Experiment

SUNCG [3] is a large dataset with manually created and labeled synthetical indoor scenes. We’ve used a subset of
2000 training and 1000 testing scenes for the experiments. In Figure 5 we show a parameter study on β.Figure 6
shows example output.
We also conducted an experiment when category bed was removed from training, the result is presented in Table
1.
Table 1: BC, mAP and mIoU for different network architectures when the bed class is removed from training. S=Score, E=Entropy. We
observe that Bayesian SSC­Net has the best score in all metrics.

CNN mIoU mAP: S mAP: E BC: S BC: E
SSC­Net ω=0 0.19 0.2 0.31

SSC­Net ω=0.01 0.14 0.23 0.29
B­SSC­Net 0.21 0.26 0.19 0.27 0.28
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β= 1, Cauchy(0.1), σ0 = 0.1
β= 2.5, Cauchy(0.1), σ0 = 0.1
β= 5, Cauchy(0.1), σ0 = 0.1
β= 7.5, Cauchy(0.1), σ0 = 0.1
Deterministic Unet ω= 0.01
Deterministic Unet ω= 0.02
Deterministic Unet ω= 0

Figure 5: BC, mAP and mIoU for the Bayesian UNet with different weights β and ω for the SUNCG mini dataset. We observe that
β = 5 is better in all metrics but mIoU, where β = 1 is best.

Figure 6: Example from the SUNCG test set. From the left we have predicted, true labels and entropy.

See paper fo
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more experim
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MNIST & SUNCG!
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Although Content Based Image Retrieval (CBIR) is an active research field, application to images 
simultaneously containing multiple objects has received limited research interest. For such complex 
images, it is difficult to precisely convey the query intention, to encode all the image aspects into one 
compact global feature representation and to unambiguously define label similarity or dissimilari-
ty. Motivated by the recent success on many visual benchmark tasks, we propose a self supervised 
method to train a feature representation learning model. We propose usage of multiple query images 
and use an attention based architecture to extract features from diverse image aspects that benefits 
from this.

Self-Supervised Representation Learning for Content Based Image  
Retrieval of Complex Scenes

AI MLX
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Although Content Based Image Retrieval (CBIR) is an active research field, application to images simultaneously containing multiple 
objects has received limited research interest. For such complex images, it is difficult to precisely convey the query intention, to encode 
all the image aspects into one compact global feature representation and to unambiguously define label similarity or dissimilarity. 
Motivated by the recent success on many visual benchmark tasks, we propose a self- supervised method to train a feature 
representation learning model. We propose usage of multiple query images and use an attention-based architecture to extract 
features from diverse image aspects that benefits from this.

Method

References
1. W. Kim, B. Goyal, K. Chawla, J. Lee, and K. Kwon, “Attention-

based ensemble for deep metric learning,” in ECCV 2018.

Introduction

Results

Self-supervised Training

Self-Supervised Representation Learning for Content Based Image 
Retrieval of Complex Scenes

Hariprasath Govindarajan, Peter Lindskog, Dennis Lundström, 
Amanda Olmin, Jacob Roll, and Fredrik Lindsten

Department of Computer and Information Science (IDA)

Attention Based Ensemble architecture (ABE-M) [1]

The representations learned 
by our self-supervised 
method from unlabelled 
videos performs well for 
CBIR involving global, semi-
global and local image 
aspects.

The usage of attention is 
beneficial, especially for local 
image aspects.

The usage of multiple query images is useful for conveying query intention for 
CBIR involving images with multiple image aspects. It also consistently improves 
the performance of our method on all image aspects.

We propose a self-supervised training method based on a contrastive pretext task 
using frames from videos. We expect a frame to be more similar to an adjacent 
frame in the video than to frames from other videos.

Encourages similar frames to have similar feature representations.

Encourages different attention heads to focus on different spatial regions.
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In our research, we are seeking to automate the discovery of scientific knowledge by building a robot 
scientist – a combination of laboratory automation hardware and artificial intelligence (AI) capable of 
closed-loop cycles of experimentation. This means the robot scientist will design experiments, execute 
them, analyse results and generate new scientific knowledge without human intervention. We direct 
our robot scientists, Eve and Genesis, toward generating new scientific knowledge about the metabo-
lism of the yeast Saccharomyces cerevisiae. Two crucial parts of the scientific process are: hypothesis 
generation and applying results of experiments to refine theory. We implement experiment selection 
algorithms to decide gene knockouts based on influence profiles of genes over certain sections of me-
tabolism. The aim is to select experiments that will provide maximum information gain for the area of 
metabolism we seek to understand.

Automation of scientific discovery in systems biology using active learning

AI MLX
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AAuuttoommaatteedd mmooddeell iimmpprroovveemmeenntt

explanatory power predictive power

consistency across
contexts

consistency withother
scientific models

Model A Model B

Metrics of quality for scientific models

A model of yeast cell metabolism can be improved in many
different ways. For a robot scientist to be able to make
improvements algorithmically, a specific procedure to reach a
goal must be specified. We define these goals as units of
discovery, for example:

• a new regulatory interaction;
• updating an existing regulatory interaction;
• a regulatory effect between groups of genes; and
• a new signaling interaction (link between some condition and
some response).

Algorithms can be defined within the structure of our integrated
yeast model in order that the robot scientist can suggest
revisions to the model. These algorithms exploit an optimisation
objective that represents the quality of the model. There are
many such objectives one could use, however we focus on a
model’s predictive power. In practice this means the robot
scientist compares simulations based on different prospective
models against experimentally obtained transcriptomic and
metabolomic data, along with fermentation profiles.

TThhee rroobboott sscciieennttiisstt’’ss rreesseeaarrcchh ppiippeelliinnee

AAnn iinntteeggrraatteedd mmooddeell ooff aa yyeeaasstt cceellll

The background knowledge of yeast cell biology that our robot
scientists use is in the form of an integrated computational model.
Here we use a modular framework—we model cell signalling,
gene regulation and metabolism separately and integrate them
during simulation calculations. This means we can choose model
structures that suit the underlying biological processes.

The model for our robot scientists is comprised of: a boolean cell-
signaling network; a directed hypergraph of co-regulatory
relationships between genes; and a genome-scale metabolic
model (Yeast8). The regulatory model is reduced to a dynamic
Bayesian network for simulation. As all these processes happen
on different timescales and with different magnitudes, we are
experimenting with several simulation protocols.

A modular model has other
advantages for a robot
scientist: machine learning
algorithms can be selected
to match the model structure
and best make use of
experimental data; the robot
scientist can isolate changes
a specific section of the
model; and we can select a
mathematical formulation
that is suited to representing
the biological processes
(e.g. stoichiometric matrix for
metabolic reactions, Boolean
rules for signaling).

Regulation
(Genes→Genes)

Metabolism
(Metabolites & Genes→

Metabolites)

Signalling
(Metabolites→

Genes)

TThhee ccaassee ffoorr aa rroobboott sscciieennttiisstt

Our research aims to automate the discovery of scientific
knowledge by building a robot scientist – a combination of
laboratory automation hardware and artificial intelligence (AI)
capable of closed-loop cycles of experimentation. This means the
robot scientist will design experiments, execute them, analyse
results and generate new scientific knowledge without human
intervention. We direct our robot scientists, Eve and Genesis,
toward generating new scientific knowledge about the
metabolism of the yeast Saccharomyces cerevisiae.

A common approach to generate new knowledge about cell
metabolism is through factorial experimentation, where the
scientist creates a mutant strain by removing one or more genes
and cultivates the yeast in various conditions. The potential
number of experiments is vast—Saccharomyces cerevisiae has
approximately 6000 genes. As such, heuristics are employed to
select experiments that will generate the most knowledge. A robot
scientist has many advantages: selecting experiments likely to
yield the most information for the least cost; greater precision
and reproducibility; greater capacity; and high-throughput data
analysis.

Automation of scientific discovery in
yeast systems biology using active
learning
Alexander Gowera, Daniel Brunnsåkera, Ievgeniia Tiukovaa and Ross Kingabc

a Chalmers University of Technology, Gothenburg, Sweden
b Cambridge University, Cambridge, United Kingdom
c Alan Turing Institute, London, United Kingdom

WALLENBERG AI,
AUTONOMOUS SYSTEMS
AND SOFTWARE PROGRAM

[1] A. Coutant et al., ‘Closed-loop cycles of experiment design, execution, and learning accelerate systems
biology model development in yeast’, PNAS, vol. 116, no. 36, pp. 18142–18147, Sep. 2019, doi: 10.1073/
pnas.1900548116.
[2] D. T. Banos, P. Trébulle, and M. Elati, ‘Integrating transcriptional activity in genome-scale models of
metabolism’, BMC Systems Biology, vol. 11, no. 7, p. 134, Dec. 2017, doi: 10.1186/s12918-017-0507-0.

This work is partially supported by the Wallenberg AI, Autonomous Systems and
Software Program (WASP) funded by the Knut and Alice Wallenberg Foundation.



Grönqvist, Johan
Lund University

55 APage

We use methods from Robust Control to obtain guarantees of closed loop stability for a dynamical 
system controlled using a neural network.

Closed Loop Guarantees with Neural Networks in Control

AI MLX
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Closed Loop Guarantees with Neural Networks in Control
Johan Grönqvist, Lund University

Department of Automatic Control

• Pick-Up Contact under vehicle
• PID controller to track Charging Rail
• Camera and Neural Network Estimate State
• Master Thesis at Automatic Control LTH

• Linear Time-Invariant Process
• Camera and Neural Network Estimate State
• Inaccurate Estimate: Nonlinear Disturbance
• Nonlinear Blocks:  Quadratic Forms

Closed Loop System

• Prediction Accuracy as Loss Function
• NN challenges: Overfitting and Adversaries
• Neurons described by Quadratic Forms
• IQC Proof of Global Stability 
• Several Kinds of Guarantees Possible

Neural Network and 
Stability Guarantee

• Problem Dependent Structure
• Depends on Choices in IQC Description
• Challenge: Deep and Large Networks
• Sparsity to the Rescue

Sparse Semi-definite
Programming

Charge while Driving
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AI planning methods are fundamental in industrial transport applications. These methods typically 
rely on manually-specified knowledge to derive plans. The goal of my PhD is to use Machine Learning 
to enhance AI planning methods by learning from human planning experts. The purpose is to  
develop learning algorithms to help humans build domains, aiming at

1. reducing the knowledge engineering effort for humans

2. providing better quality plans in many domains

3. allowing automated planning and scheduling systems to learn how to execute plans or policies from 
previous experience.

In this poster I present an approach to address this problem with its the main challenges and I high-
light the industrial need.

Can Industrial Transport Applications be improved using AI planning?

AI MLX
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1. How to learn behaviors from execution traces?
Related work
• Learn Behavior Trees from traces in the real-time strategy

gaming context [1].

• Learn Behavior Trees and transfer new skiils using 
programming by demonstration (PbD) [2,3]

2. How to facilitate human modelling of BTs?

3. How to obtain a domain theory from BTs?
Research studies [4,5] have been conducted to extract BTs
from planning domains. The idea is instead to extract a
planning domain from a BT.

CCaann  IInndduussttrriiaall  TTrraannssppoorrtt  AApppplliiccaattiioonnss  bbee  iimmpprroovveedd  
uussiinngg  AAII  ppllaannnniinngg??

Simona Gugliermo, Örebro University
Center of Applied and Autonomous Sensors (AASS)

Advisors: Federico Pecora, Christos Koniaris

• AI planning methods are useful for industrial transport applications.
• Current AI planning methods rely on manually-specified knowledge, encoded in the planning domain.
• AI planning domains are difficult to write for humans.
• Aim: use Machine Learning to

1. Reduce the knowledge engineering effort for humans
2. Provide better quality plans in many domains
3. Allow AI planning systems to learn how to execute plans or policies from previous experience.

References
1. Robertson and Watson, (2015). Building behavior trees from observations 

in real-time strategy games. In 2015 International Symposium on 
Innovations in Intelligent SysTems and Applications (INISTA).

2. Sagredo-Olivenza et al., (2019). Trained Behavior Trees: Programming by 
Demonstration to Support AI Game Designers. IEEE Transactions on 
Games.

3. French et al., (2019). Learning Behavior Trees From Demonstration. In 
2019 International Conference on Robotics and Automation (ICRA).

4. Colledanchise et al. (2019a). Towards Blended Reactive Planning and 
Acting using Behavior Trees. In IEEE International Conference on Robotics 
and Automation, Montreal, Canada. 

5. Martín et at., (2021). Optimized Execution of PDDL Plans using Behavior
Trees. In International Foundation for Autonomous Agents and Multiagent 
Systems (AAMAS)

Motivation

Research Questions

Executed
traces

Decision 
Tree

Rule
extraction

Behavior
Tree

Executed/ 
Simulated

Traces
Behavior

Tree
Planning 
Domain

Proposed Approach

1. Learn a Behavior Tree (BT) from executed traces (data 
mining techniques).

2. Revise and correct (if needed) the learned Behavior Tree by 
humans to fully control the resulting behavior.

3. Approval of the final Behavior Tree.
4. Learn a domain description from the Behavior Tree

Industrial need

1. A maximally specific BT is 
created from the given trace

2. The BT is iteratively 
reduced in size by finding 
and combining common 
patterns of actions. 

3. If no new satisfactory 
patterns are found, the 
process stops. 

1 4

2 3

- Involve fleet transport managers in the learning loop
- Make the learning process more transparent and tractable 
- Increase the generality step by step
- Create an application-independent method, usable with 

different scenarios.

Main Features

Human 
Expert

AI planning can 
introduce disruptive 
changes in industrial 

transport applications. 

A decision support tools 
can increase the 

capabilities of fleet 
transport managers. 

Overcome the challenge 
of transferring the fleet 

transport managers 
knowledge

Better company 
performance and better 

satisfaction of their 
customers. 
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Two new paradigms have emerged in the pharmaceutical industry to increase the productivity in drug 
design: (1) AI-augmented molecular design that utilizes generative models for sampling the chemical 
space; (2) Automated laboratories together with machine learning to make, test and analyze potential 
drug candidates without human intervention. This work focuses on how to select what molecules to 
make in order to explore and exploit the chemical space in an efficient way. The results can enable 
a faster and better way to find drug candidates, ultimately providing new drugs for unmet medical 
needs faster to the benefit of patients worldwide.

Sequential Decision-making in Drug Discovery

AI MLX
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Sequential Decision-making in Drug Discovery
Hampus Gummesson Svensson†,‡,

Esben Jannik Bjerrum‡, Christian Tyrchan‖, Alexander Schliep♯,
Ola Engkvist‡, Morteza Haghir Chehreghani†

Two new paradigms have emerged in the pharmaceutical industry to increase the productivity in drug design: (1) AI-augmented 
molecular design that utilizes generative models for sampling the chemical space; (2) Automated laboratories together with machine 
learning to make, test and analyze potential drug candidates without human intervention. This work focuses on how to select what
molecules to make in order to explore and exploit the chemical space in an efficient way. The results can enable a faster and better way 
to find drug candidates, ultimately providing new drugs for unmet medical needs faster to the benefit of patients worldwide.

Background

References
1. Blaschke, Thomas, et al. "REINVENT 2.0: an AI tool for de novo drug 

design." Journal of Chemical Information and Modeling 60.12 (2020): 5918-
5922.

2. Johansson, Simon Viet, et al. "Using Active Learning to Develop Machine 
Learning Models for Reaction Yield Prediction." ChemRxiv (2021).

3. Slivkins, Aleksandrs. "Contextual bandits with similarity 
information." Proceedings of the 24th annual Conference On Learning Theory. 
JMLR Workshop and Conference Proceedings, 2011.

4. Chen, Lixing, Jie Xu, and Zhuo Lu. "Contextual combinatorial multi-armed 
bandits with volatile arms and submodular reward." Advances in Neural 
Information Processing Systems 31 (2018): 3247-3256.

5. Nika, Andi, Sepehr Elahi, and Cem Tekin. "Contextual combinatorial volatile 
multi-armed bandit with adaptive discretization." International Conference on 
Artificial Intelligence and Statistics. PMLR, 2020.

Motivation & Research goals

Challenges:
1. “Infinite” space (generated)
2. New molecules in each cycle
3. Select several molecules to make and test

Proposed solution:
To study this problem in the context of sequential decision-
making, where the goal is to adaptively compute the most
informative decisions.

Formerly, we currently seek a multi-armed bandit that can handle
the following settings:
• Contextual
• Infinite action and/or context space
• Volatile arms
• Combinatorial

Previous works show approaches for several or all these settings
using similarity information [3,4,5]. We have a high-dimensional
and complicated context and large unfixed dataset (generated).
Hence, we need to adapt and extend these methods to our
problem.

A framework for simulating the different steps in the drug
discovery process is being developed. This will help fast
evaluation and comparison of different sequential decision-
making strategies for selecting what molecules to make.

Approach

† Department of Computer Science and Engineering, Chalmers University of 
Technology
‡ Molecular AI, Discovery Sciences, R&D, AstraZeneca
‖ Medicinal Chemistry, Research and Early Development, Respiratory and Immunology 
(R&I), BioPharmaceuticals R&D, AstraZeneca
♯ Department of Computer Science and Engineering, University of Gothenburg

Drug optimization is a complex, multiparameter optimization
with dozens of non-correlating and even opposing parameters.
Therefore, the process of finding drug candidates is an iterative
process.

Generative models such as REINVENT [1] can be used to
design thousands of molecules by sampling the chemical space,
which is estimated to consist of up to 1060 drug-like molecules.
Subsequently, to understand the true properties of a molecule,
we need to make it. If a molecule is successfully made, we can
test and analyze its properties to better steer the generation of
molecules. On the other hand, it is only possible to make a few
molecules since each experiment is costly and time-
consuming, which limits the amount of information that can be
acquired in each iteration.

Goal: Optimize the selection of molecules to test, to explore and
exploit desired areas of the chemical space in an optimal way.

Time est. 2-4 weeks per cycle
(Approx. ~100-200 weeks in total)

Approx. ~50 cycles needed
per candidate

Design

Make

Test

Analyze

Prior

What to 
make 
next?

Simulation

Ground
truth

Improve 
steering

Generative 
model

Design Make

TestAnalyze

Selection

Prior

Previous contributions (see [2]):
• Active learning to help to decrease the amount of data 

needed to develop robust models for reaction yield 
predictions, helping to successfully make molecules.
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The way technology has evolved in the last decades has changed our vision on how to face the pro-
blems of our daily life. Artificial Intelligence (AI) is taking an important role, being present in many 
fields, as for example Health Care. This research aims to fuse the different types of laboratory  
measures (including behavioral, peripheral, and central nervous systems) with cutting-edge techno-
logy based on predictive algorithms. The main objective is to discover patterns in the data that give us 
cues of how a person is feeling with the final goal of designing models that are able to monitor mental 
well-being, avoiding depressive, anxious, or stressful states during daily life activities.

AI-based Mental Well-being monitoring during activities of daily life

AI MLX
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Large language models are known to suffer from the hallucination problem in that they are prone to 
output statements that are false or inconsistent, indicating a lack of knowledge. A proposed solution 
to this is to provide the model with additional data modalities that complements the knowledge 
obtained through text. We investigate the use of visual data to complement the knowledge of large 
language models by proposing a method for evaluating visual knowledge transfer to text for uni- or 
multimodal language models. The method is based on two steps, 1) a novel task querying for know-
ledge of memory colors, i.e. typical colors of well-known objects, and 2) filtering of model training 
data to clearly separate knowledge contributions. Additionally, we introduce a model architecture that 
involves a visual imagination step and evaluate it with our proposed method. We find that our method 
can successfully be used to measure visual knowledge transfer capabilities in models and that our 
novel model architecture shows promising results for leveraging multimodal knowledge in a 
unimodal setting.

Transferring Knowledge from Vision to Language: How to Achieve it and how 
to Measure it?

AI MLX
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Transferring Knowledge from Vision to Language: How to Achieve it and how to Measure it?
Tobias Norlund*,  Lovisa Hagström*,  Richard Johansson

Chalmers University of Technology

Motivation & Summary
Despite the ability of language models to learn and 
hold large quantities of structural knowledge [1], LMs 
are are also known to suffer from the hallucination 
problem in that they are prone to output statements 
that are false or inconsistent, indicating significant 
knowledge gaps [2]. A hypothesis is that this  
knowledge in many cases simply is missing in the large 
text corpora typically used for training the models, due 
to e.g  reporting bias [3]. In such cases certain types of 
knowledge might also be more readily available in a 
different data modality.

In this work, we investigate visual knowledge 
transfer, i.e. to which extent language models can 
incorporate and textually express knowledge 
originating from a visual modality.

We investigate this by constructing a novel 
cloze-style task testing knowledge of memory colors 
for common objects (such as blood is red, a lemon is 
yellow etc). We also build a large vision-and-language 
dataset used for self-supervised training, and by careful 
filtering we make sure the color information is only 
available through the images and not the text.

Finally, we compare two strategies for how to most 
effectively query the trained multimodal language 
model for this visual knowledge.

We show that language models are able to texually 
express knowledge obtained from a visual modality, 
as a result from multimodal self-supervised training.

Querying strategies Multimodal Self-supervised Training:
CLIP-BERT

We compare two strategies for querying the 
language models for this visual knowledge, 
through [MASK] token prediction.  
 a) Implicit: The visual knowledge is 
retrieved from the trained parameters of the 
language model. 

Results
● ①: The original (text-only) BERT-base 

performs poorly on this task, close to 
majority baseline 

● ① vs ⑥: Continue MLM training of 
BERT-base on the text part of our multimodal 
dataset improves performance slightly 
despite filtering

● ⑥ vs ⑧: Adding images to training improves 
performance significantly, showing effective 
visual knowledge transfer! 

● ③ vs ④ and ⑦ vs ⑧: The explicit querying 
strategy performs better than the implicit 

①

②

③

④

⑤

⑥

⑦

⑧

⑨

We propose a novel visual-and-language model 
denoted CLIP-BERT, where the image encoder of the 
pre-trained CLIP [4] model is used to represent the 
image before appended to the input of a BERT-base 
model. We train this model using MLM on our 
vision-and-language dataset, and seek to evaluate how 
this affects performance on the memory colors task.

Task: Memory colors
With the help of 11 human annotators, we have created 
a dataset of 109 common objects and their memory 
colors, with high annotator agreement.

 b) Explicit: We use the text encoder of the 
CLIP model to "imagine" a visual 
representation of the query text and append to 
the transformer input. This way the visual 
knowledge can partly be retrieved from this 
input, as well as from the trained model 
parameters.

* Equal contribution

References
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Data centers (DCs) have complex thermal environments which traditional cooling controllers are not 
able to fully capture. 
These controllers are tuned using simple heuristics, which can result in inefficient operation and subo-
ptimal cooling.
A Reinforcement Learning (RL) agent is developed for controlling the cooling fans, featuring system 
awareness from sensors on servers, in the room, and outdoors.
To realistically run the training and evaluate agent effectiveness, a model of a DC environment is 
developed. 
The model features a CFD simulation of the DC room, heat-generating servers, and fans as well as 
heat exchangers, compressors, and dry coolers.
Experiments show that the RL agent can outperform baseline agents modeling current best practices 
in a simple setting where some external disturbances act on the system. Additionally, the
RL agent can adapt to larger changes in the environment, such as systems breaking down.

Adaptive Control of Data Center Cooling using Reinforcement Learning

AI MLX
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Adaptive Control of Data Center Cooling using
Reinforcement Learning

Albin Heimerson, Johannes Sjölund, Rickard Brännvall, Jonas Gustafsson, Johan Eker

Collaborations
Ericsson Reserach Data Center and RICE SICS North are research data centers collaborating with us to develop better methods
for data center control. The work was supported by Vinnova grant ITEA3-17002 (AutoDC).

Problem

The total energy consumption by data centers is expected to grow from
1.15% of global energy consumption in 2016 to around 1.86% in 2030 a .
The International Energy Agency states that one of the innovation gaps
in the IT-sector that needs to be filled is applying AI to data centers.

We want to create smarter control algorithms for the cooling systems
that are both adaptive and can reason based on more information
available in the datacenter.

CFD Modelling of data center heat flow
aM. Koot and F. Wijnhoven, ”Usage impact on data center electricity needs: A system dynamic forecasting model, 2021”

Modelling

A conceptual schematic of the physical model is shown below where the
different parts are modeled using different strategies. The ”IT space” is
modeled using an CFD method called Lattice Boltzmann Method, using
an algorithm called Single Relaxation Time Bhatnagar-Gross-Krook,
and the model was first presented by Sjölunda. Boundary conditions of
the servers and cooling systems are based on mathematical modeling
of hardware such as the power used by the IT load, the fan speeds,
the vapor compression, and the heat exchangers, which all affect the
temperatures and air velocities. In previous workb a similar model was
used with a simpler room simulation.

A typical cooling loop for a data center. It can utilize a drycooler to
unload the compressor and reduce energy consumption.

aJ. Sjölund, ”Real-time thermal flow predictions for data centers: Using the lattice boltzmann method on graphics process-
ing units for predicting thermal flow in data centers,” 2018

bA. Heimerson, R. Brännvall, J. Sjölund, J. Eker, and J. Gustafsson, ”Towards a Holistic Controller: Reinforcement Learning
for Data Center Control”, 2021

Reinforcement Learning

The states used is server loads, server outlet temperatures and outdoor tem-
perature. The action is temperature and flow setpoints for the cooling units.

The reward was a weighted sum of two objectives, the energy consumption
in the cooling system and a penalty on breaking a temperature threshold of
27◦ C for the server inlets.

Server loads
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The algorithm needed to be a bit
stable while learning, so PPOa was
used throughout this work.
PPO is an actor-critic algorithm,
where the actor maps state to
action and the critic maps state
to expected reward. The critic
tries to learn the bellman equation,
V (st) = rt+1 + γV (st+1), while the
actor tries to increase the proba-
bility of actions that will have a
good future reward according to
the critic.
The special thing about PPO is
that it doesn’t allow the actor to
change too much during each up-
date, before it has been evaluated
on new data.

aJ. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O.
Klimov, ”Proximal Policy Optimization Algorithms”, 2017

RL Agent

State

Action

Value
State st

State st+1

Reward rt

Reward rt+1

Action at

Datacenter
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From Heat

Exchangers

To Heat
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Results

We compare the RL agent to two baselines, one that is very good at the en-
ergy objective by keeping a higher outlet temperature of 22◦ C, and another
that fixes the temperature threshold by keeping the minimal temperature of
18◦ C.
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We see that the RL agent matches the energy efficient baseline quite well in
energy, while still managing to keep the cold isle loss to a minimum, and
achieves the highest reward.

Next we want to see how the agent can adapt to changing conditions such
as a cooling unit breaking down CRAH0 loses efficiency, and the cold isle loss
will be harder to uphold, but the RL agent will adapt with time to remove the
loss (left). The RL agent increases the flow of CRAH0 after the inefficiency is
introduced, as well as the flow of CRAH1 which share the same cold aisle.
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Bayesian optimization (BO) has become an established framework and popular tool for hyperparame-
ter optimization (HPO) of machine learning (ML) algorithms. While known for its sample-efficiency, 
vanilla BO can not utilize readily available prior beliefs the practitioner has on the potential location 
of the optimum.  Thus, BO disregards a valuable source of information, reducing its appeal to ML 
practitioners. To address this issue, we propose \method, an acquisition function generalization which 
incorporates prior beliefs about the location of the optimum in the form of a probability distribution, 
provided by the user. In contrast to previous approaches, $\pi$BO is conceptually simple and can 
easily be integrated with existing libraries and many acquisition functions. We provide regret bounds 
when \method is applied to the common Expected Improvement acquisition function and prove 
convergence at regular rates independently of the prior. Further, our experiments show that \method 
outperforms competing approaches across a wide suite of benchmarks and prior characteristics. We 
also demonstrate that $\pi$BO improves on the state-of-the-art performance for a popular deep lear-
ning task, with a $12.5\times$ time-to-accuracy speedup over prominent BO approaches.

Augmenting Acquisition Functions with User Beliefs for Bayesian Optimization

AI MLX
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Accurate routing network status estimation is a key component in Software Defined Networking. 
However, existing deep-learning-based methods for modeling network routing are not able to extra-
polate towards unseen feature distributions. Nor are they able to handle scaled and drifted network 
attributes in test sets that include open-world inputs. We propose a novel approach for modeling 
network routing, using Graph Neural Networks. Our method can also be used for network latency 
estimation. Supported by a domain-knowledge-assisted graph formulation, our model shares a stable 
performance across different network sizes and configurations of routing networks, while at the same 
time being able to extrapolate towards unseen sizes, configurations, and user behavior. We show that 
our model outperforms most conventional deep-learning-based models,

Open World Learning Graph Convolution for Latency Estimation in Routing 
Networks

AI MLX
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Open World Learning Graph Convolution for Latency 
Estimation in Routing Networks

Yifei Jin, Marios Daoutis, Sarunas Girdzijauskas, Aristides Gionis
KTH Royal Institute of Technology, Ericsson Research

Accurate routing network status estimation is a key component in Software Defined Networking. However, existing deep-learning-based 
methods for modeling network routing are not able to extrapolate towards unseen feature distributions. Nor are they able to handle 
scaled and drifted network attributes in test sets that include open-world inputs. We propose a novel approach for modeling network 
routing, using Graph Neural Networks. Our method can also be used for network-latency estimation. Supported by a domain-knowledge-
assisted graph formulation, our model shares a stable performance across different network sizes and configurations of routing 
networks, while at the same time being able to extrapolate towards unseen sizes, configurations, and user behavior. We show that our 
model outperforms most conventional deep-learning-based models, 

Extrapolation in Routing Network
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Routing Network Status Estimation

We proposed a Graph Convolution based approach for route state estimation that:
•Works in a Directed Graph Formulation.
•Introduce Node Role adjacency Information in pair-wise attention, i.e., improves 
GNN expressivity, identifies similar (and key!) hops in a path.
•Does Arthmetic Extrapolation towards unseen node/edge attrbutes.
•Our model can be mathematically proven, on the basis of network calculus and 
queuing theory, to be expressive enough for routing network staute estimation 
task.

Proposed Solution

Expansion of the network --- An Open World Learning Problem
• More users (𝑖𝑖) & Drifted Traffic Distribution 
• Larger link capacity (𝑖𝑖𝑖𝑖)
• Larger network topology (𝑖𝑖𝑖𝑖𝑖𝑖)
• Per OD-pair have longer Trajectories (𝑖𝑖𝑖𝑖)
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User E2E latency 𝑄𝑄!Routing Policy 𝑅𝑅!
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Unsolved problem in state of art models:
• Structual Feature of a link is underrepresented.
• There is no structure to gurantees the extrapolation ability on:

• Attribute value (larger link capacity & drifted traffic throughput)
• Larger sized graph 𝐺𝐺).

• There is no theoratical guarentee of the model validity

• Our proposed solution requires No GPU to train, requires only 6-25% embedding size
comparing with the known published benchmarks.
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Bayesian Reinforcement Learning (BRL) offers a decision-theoretic solution to the reinforcement lear-
ning problem. While “model-based” BRL algorithms have focused either on maintaining a posterior 
distribution on models, BRL “model-free” methods try to estimate value function distributions but 
make strong implicit assumptions or approximations. We describe a novel Bayesian framework,\emph 
{inferential induction}, for correctly inferring value function distributions from data, which 
leads to a new family of BRL algorithms. We design an algorithm, Bayesian Backwards Induction 
(BBI), with this framework. We experimentally demonstrate that BBI is competitive with the state of 
the art. However, its advantage relative to existing BRL model-free methods is not as great as we have 
expected, particularly when the additional computational burden is taken into account.

Inferential Induction: A Novel Framework for Bayesian Reinforcement Learning

AI MLX
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The problem

Setting: Bayesian reinforcement learning (BRL).
Model-based BRL: Straightforward formalisation by model distributions.
Model-free BRL: Value function distributions via implicit
approximations.

This work

Solution: Derive correct value function distributions directly.
Expectation: Improved modeling could lead to better performance
Reality: BBI is competitive, but more complicated and slower.

Reinforcement learning

An unknown Markov Decision Process (MDP) µ with state st, action at,
reward rt ∼ Pµ(rt | st, at), next state st+1 ∼ Pµ(st+1 | st+1, at).

Objective: Maximize utility ut =
T∑

k=t
γtrt

The value function V π of a policy π is
V π

µ (s) ≜ Eπ
µ [ut | st = s0], at ∼ P π(a | st)

Bayesian reinforcement learning

The Bayes-optimal solution is
max

π
Eπ(u|D)

Two main Bayesian approaches

Model based: Belief β ≜ P (µ | D). We can then obtain

V π
β (s) =

∫

µ

V π
µ (s)dP (µ | D)

Model free: Estimate P (V | D) directly.

Bayesian value function estimates

Existing model-free BRL algorithms follow the GPTD[1] framework.

Gaussian process prior over the P (V )
Likelihood function

P (D | V ) ≈
t∏

i=1
exp{−|V (si) − ri − γV (si+1)|2}, si ∈ D.

At a high level, the inference is :

P (V | D) = P (V )P (D | V, µ̂(D))
P (D)

Implicitly assumes the empirical MDP µ̂(D) is correct
⇒ ignores model uncertainty.

Inferential induction

Wepropose a framework, Inferential Induction, to calculate the value func-
tion distribution P π(V | Dt) for policy π, correctly.

Data Dt = s1, a1, r1, . . . , st, at, rt

⇒VF posteriorP (VT |Dt), . . . , P (Vi|Dt), . . . , P (Vt|Dt).
Calculate the value functions with the inductive integral

P π(Vi | Dt) =
∫

V
P π(Vi | Vi+1, Dt) dP π(Vi+1 | Dt) (induction)

P π(Vi | Vi+1, Dt) =
∫

M
P π(Vi | µ, Vi+1)︸ ︷︷ ︸

Bellman operator
d

link distribution︷ ︸︸ ︷
P π(µ | Vi+1, Dt) . (marginalisation)

We introduce Bayesian Backwards Induction for calculating P π(V | Dt).

Calculate integral through Monte Carlo sampling of Vi+1 and µ.
Define Gaussian kernel relating Vi and utility samples from µ to
calculate link distribution P π(µ | Vi+1, Dt).
Importance sampling weights on P (Vi | µ, Vi+1)
Utilising link distribution may above all be useful when true µ not in
model class.

Experiments
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(b) Inverted Pendulum

CPU-time (in seconds) used for each algorithm with 100 policy updates for
Chain and 5 updates for Maze.

BBI PSRL

Chain 14 5
Maze 921 6

Conclusion

New framework for Bayesian RL.
Beats GPTD, but results are not as impressive as we hoped.
BBI uses P (µ | D) to obtain P (µ|V, D). Additional methods suggested
in the work avoid this.
It does not appear to be possible to do purely “model-free” Bayesian
value function estimation.
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Abstract - Classifiers using convolutional neural networks (CNNs) often yield high accuracies on 
samples that come from the same distribution as the training data. In this study we evaluate a CNN 
classifier’s ability to discriminate drones from non-drone targets, such as birds, when they are not 
represented in the training data. We found that the mean accuracy on such out-of-distribution 
drones was 78%. By introducing a synthetic drone class, generated from a mathematical model, the 
out-of-distribution drone accuracy was improved to 86%. When trained on all drone types the mean 
accuracy over all classes was 90%, and greater than 95% for signal to noise ratios of at least 17.5 dB. 
The data was collected with a 77 GHz mechanically scanning radar with only 9 ms dwell time.

Model-Aided Drone Classification Using Convolutional Neural Networks

AI MLX
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Model-Aided Drone Classification 
Using Convolutional Neural Networks

Alexander Karlsson*†, Magnus Jansson*, Mikael Hämäläinen†

*Division of Information Science and Engineering KTH,
†Electronic Warfare Systems, Saab.

Abstract - Classifiers using convolutional neural networks (CNNs) often yield high accuracies on samples that come from the same
distribution as the training data. In this study we evaluate a CNN classifier’s ability to discriminate drones from non-drone targets, such 
as birds, when they are not represented in the training data. We found that the mean accuracy on such out-of-distribution drones was 
78%. By introducing a synthetic drone class, generated from a mathematical model, the out-of-distribution drone accuracy was improved 
to 86%. When trained on all drone types the mean accuracy over all classes was 90%, and greater than 95% for signal to noise ratios of 
at least 17.5 dB. The data was collected with a 77 GHz mechanically scanning radar with only 9 ms dwell time

Background The input data is a segment
from a scan corresponding to
5 m in range and 2.3° in
azimuth.

Each segment is then
preprocessed by taking the
discrete Fourier transform
over azimuth (yielding a
Doppler spectrum) and then
normalized. Synthetic drone
data at range 𝑟𝑟 and FM-
sweep 𝑝𝑝 was generated as

Method

A drone, or unmanned aerial vehicle (UAV), can be used to
deliver harmful payloads such as bombs, cause disturbances at
e.g. airports, and collect footage of sensitive sites to name just a
few potential threats. The ability to accurately detect and classify
drones is therefore of great importance in present and future
radar surveillance systems. By classification we refer to the
process of distinguishing drones from non-drone targets.

In the literature, the non-drone class is mainly constituted by
birds, but depending on what area is under surveillance humans,
animals, flying frisbees etc. may also become relevant non-
drone targets. Airplanes and other aerial and ground vehicles
can often be discarded as false alarms by their radar cross
section (RCS) values alone. Birds, humans and drones however
may very well have comparable RCS.

Our main objective is to evaluate a neural network based
classifier on drone types not present in the training data. To
make the classifier more robust to such out-of-distribution drones
we introduce training on both synthetic and real data. The radar
we use in this study is a SAAB SIRS 1600 frequency modulated
continuous wave (FMCW) radar operating at 77 GHz. This is a
mechanically scanning radar and the dwell time is limited to the
scan rate and beamwidth, in this case 9 ms.

Results
We see that for SNR> 17.5 dB
the mean accuarcy is 95% or
more when all drones are used in
training. When only one drone
class is used, the mean accuracy
on the known classes is also >
95% for SNR> 17.5 dB whether
synthetic data is used or not. The
accuracy on the out-of-
distribution drones is only > 82%
without the synthetic data class
and > 91% with synthetic data
when the SNR> 17.5 dB.

Data was collected from six different drones, birds (mostly
seagulls) and humans. We trained the neural network on each
drone, yielding six different scenarios. For reference we also
trained on all six drones. The number of classes is 𝑁𝑁𝑐𝑐.

where 𝑁𝑁𝑝𝑝 is the number of propellers, λ is the carrier wavelength,
ν is the propeller’s rotation rate in rounds per second divided by
the pulse repetition frequency, 𝜑𝜑𝑛𝑛 is the initial phase of propeller
n, 𝑑𝑑 is the blade length and 𝛼𝛼1 and 𝛼𝛼2 are weights that
determine the symmetry of the Doppler spectrum.

where 𝑧𝑧𝑝𝑝 is the combined propeller return at pulse/FM-sweep 𝑝𝑝,
𝑤𝑤𝑟𝑟,𝑝𝑝 is complex white Gaussian noise, 𝐺𝐺𝑟𝑟,𝑝𝑝 is the combined pulse
gain at range index r and azimuth beam gain at index 𝑝𝑝, and ҧ𝑧𝑧 is
the rms value of 𝑧𝑧 over all 𝑝𝑝 pulses. For each pulse
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Cloud management systems are increasingly using machine learning models for autonomous resource 
provisioning. These systems need to be frequently calibrated and their models re trained to capture 
and understand the changing behaviors in the cloud system.
Fundamental assumptions include: workload volume may drastically increase from initial deploy-
ment to normal use years later, and that major changes to the machine learning models are expected 
at times of software and hard ware upgrades and with changing user trends. Models need also be 
able to deal with periods of volatility in various metrics. A notable problem that arises during those 
conditions is the change in the statistical properties of the monitoring data. This condition known 
as concept drift results in incorrect predictions and reduced efficiency of the models. Focus of this 
research is investigate and propose efficient method that adapt the dynamic behavior of cloud systems. 
Moreover, since the amount of monitoring data available in these systems is virtually unlimited, our
second challenge includes developing new methods and algorithms for selecting important subsets of 
data for efficient training while being in control of prediction uncertainty.

Novel Data Selection Strategies and Associated Machine Learning Algorithms 
for Cloud Management

AI MLX
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Cloud management systems are increasingly using machine learning models for autonomous resource provisioning. These systems 
need to be frequently calibrated and their models re trained to capture and understand the changing behaviors in the cloud system. 
Fundamental assumptions include: workload volume may drastically increase from initial deployment to normal use years later, and that 
major changes to the machine learning models are expected at times of software and hard ware upgrades and with changing user 
trends. Models need also be able to deal with periods of volatility in various metrics. A notable problem that arises during those 
conditions is the change in the statistical properties of the monitoring data. This condition known as concept drift results in incorrect 
predictions and reduced efficiency of the models. Focus of this research is investigate and propose efficient method that adapt the 
dynamic behaviour of cloud systems. Moreover, since the amount of monitoring data available in these systems is virtually unlimited, our 
second challenge includes developing new methods and algorithms for selecting important subsets of data for efficient training while 
being in control of prediction uncertainty.

Challenges

Future Work

Smart data selection strategies
○ Uncertainty Sampling targets data that is obviously confusing to your 

model in its current state
○ Diversity sampling targets data that are gaps in your model’s knowledge.

■ Eliminating overlapping of information
○ Find metrics that collectively provide accurate, contextual, and insightful 

information on various aspects of model performance.

Motivation and Research Goals

Change Adaptation:
● We implement State-of-the-art concept drift detection 

algorithms for time series analysis for workload prediction 
within cloud environment.

● We utilize both machine learning time series prediction 
techniques incorporated with stream processing algorithms 
to update workload prediction models on the fly.

Methods

Workload Predictions based on only historical logs does not 
consider changes in usage patterns or resources.

Concept Drift:

Class definition change p(c|X) while p(X) remains the same. (real 
drift / concept drift / functional relation change)

● Sudden shifts in workload
● Change in user usage pattern
● Software or hardware upgrade

Change Adaptation

Dynamic behaviour of application 
workload

 Unpredictable user behavior 

2

1Complexity and heterogeneity of 
data in Cloud  environments

Complexity and heterogeneity of data in 
Cloud environments

1

Data Selection

 Vast volumes of metrics 
logs generated in large 
scale

3

Methods
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In this project we propose an empirical study of how networks handle changes in complexity of 
the data. We investigate the effect of network capacity on generalization performance in the face of 
increasing data complexity. For this, we measure the generalization error for an image classification 
task where the number of classes steadily increases. We compare a number of modern architectures at 
different scales in this setting.

An empirical study of the relation between network architecture and 
complexity

AI MLX
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Abstract
We propose an empirical study of how networks handle changes in complexity of the 
data. We investigate the effect of network capacity on generalization performance in 
the face of increasing data complexity. For this, we measure the generalization error 
for an image classification task where the number of classes steadily increases. We 
compare a number of modern architectures at different scales in this setting. 

Questions
• How can we characterize the changes in generalization error as complexity is 

increased?
• How does capacity relate to generalization error as complexity increases? Does 

scaling the network by a particular dimension (e.g. depth) offer an advantage?
• How do architectural innovations such as group convolutions affect the 

capacity/generalization/complexity relationship?

Hypothesis

Ensure monotonic increase in complexity by introducing new 
classes but not necessarily linear increase.

Results and Conclusion

Our empirical findings roughly 
align with our hypothesis as it was 
outlined in the Hypothesis.

For a limited but practical setting, 
we show that a deep network’s 
performance decreases log-
linearly with problem complexity 
as indicated by the number of 
categories.

Scaling the model size has 
diminishing returns for problems of 
different complexities - the 
diminishing returns effect is more 
prominent for more complex 
datasets but still observable for 
simpler ones.

Effects of increasing data complexity on architectures with different capacity. Top-1 image classification validation accuracy for networks with various depths (a,b) and widths (c,d) as the number of classes k in the 
task increases (x-axis is scaled in log10). In (a,c), the number of training examples N grows with the number of classes, in (b,d) N=100,000. Image data was sampled from the broader ImageNet repository, not 
the ILSVRC subset, and includes up to 3,761 classes with ≈400 training samples per class. Results shown are the mean top-1 accuracy for basic ResNet blocks with up to 5 repetitions (some repetitions were not 
completed). Shaded areas indicate 1 s.d. The dashed lines indicate performance of a random classifier for reference.

EEmmaaiill::  eekkoonnuukk@@kktthh..ssee

Acknowlegements: This work was supported by WASP-AI and the Swedish Research Council (VR) 
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The aim is to build models for decentralized data following the Federated Learning (FL) approach. 
In FL, a general approach for learning consists of an iterative process in which (i) a set of agents is 
selected and they download the current model; (ii) the agents compute an updated model based on 
their data; (iii) the model updates are sent to the server; and (iv) the server aggregates these models to 
construct an improved general model. Privacy issues arise concerning the updated model sent to the 
server and how the models are aggregated. We plan to work on non-numerical (e.g., decision trees) 
and unsupervised learning models. This study presents an approach for implementing FL with deci-
sion trees on horizontally partitioned data.

A Privacy Preserving Federated Learning Framework with Decision Trees

AI MLX
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Motivation & Research Goals

The aim is to build models for decentralized data following the Federated Learning (FL) approach. In FL, a general approach for
learning consists of an iterative process in which (i) a set of agents is selected and they download the current model; (ii) the agents
compute an updated model based on their data; (iii) the model updates are sent to the server; and (iv) the server aggregates these
models to construct an improved general model. Privacy issues arise concerning the updated model sent to the server and how
the models are aggregated. We plan to work on non-numerical (e.g., decision trees) and unsupervised learning models. This study
presents an approach for implementing FL with decision trees on a horizontally partitioned data.

Methods

Creating Non-Independent and Identically Distributed Partitions

Minimize pTQp+ pTL
subject to ∑d

i=1 pij = dnj/n for each j = 1, . . . , l∑l
j=1 pij = 1 for each i = 1, . . . , d

pij ≥ 0 for each i = 1, . . . , d and j = 1, . . . , l
pij = 0 for each pij ∈ N

(1)

where, n is number of records, l is number of classes, pij denotes probabil-
ity for ith device and jth class,

∑l
j=1 pij = 1 for all devices i = 1, . . . , d,

N denotes the set of probabilities that needs to be set to zero, square ma-
trix Q = Id (i.e., the identity matrix of size d · l) and the vector L = −2A
where A = (α11, α12, . . . , αdl). We consider a quadratic objective func-
tion of the form OF (p;αij) = (pij −αij)

2 = (p2ij −2αijpij +α2
ij), where

αij is a random number taken from a uniform distribution in [0,1].

Selected Results

Firstly, each device protects its raw data using Mondrian, and then
trains a decision tree classifier on its protected data. Devices share
the root node of their trees with the aggregator. The aggrega-
tor merges the trees by choosing the most common split attribute
and grows the branches based on the split values of the chosen
split attribute. This recursive process stops when all the nodes
to be merged are leaf nodes. After the merging operation, the
aggregator sends the merged decision tree to the distributed de-
vices. Hence, we build a joint machine learning model based on
the data from multiple devices while offering k-anonymity to the
participants.

We show the results when the devices use data from the UCI datasets and
where the databases follow non-IID data partitions of the whole dataset.
We observe a drop of 2% in accuracy in the non-IID setting compared
with the IID setting, when k=0 (k=0 means without anonymisation).
This shows that the case of non-IID partitioning of data has some effect
on the performance of our framework. From our perspective, this behavior
is due to the fact that different devices have data with different probability
distributions. The classification accuracy remains acceptable in the non-
IID case, even when the value of k is as big as 50.
From the privacy point of view, using Mondrian k- anonymity for convert-
ing raw dataset into anonymised dataset is a good choice, as it is robust
to various kinds of attacks and also it takes into account the multivariate
distribution of the data.

Possible Future Improvements of our work

• In our implementation, all devices have the policy of sharing
all their nodes with the aggregator. It would be possible that
different devices have different policies about sharing (or not)
their nodes.

• In our approach, node sharing is based on the decision tree
learned with the original data. If partial decision trees are shared
by the aggregator, devices can recompute their trees at each
iteration.
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Team training in complex domains often requires a substantial amount of resources, e.g., instructors, 
role-players and vehicles. For this reason, it may be difficult to realize efficient and effective training 
scenarios in a real-world setting. Instead, intelligent agents can be used to construct synthetic, simu-
lation-based training environments. However, building behavior models for such agents is challen-
ging, especially for the users of the training systems, who typically do not have expertise in artificial 
intelligence. In this project, we study how reinforcement learning can be used to simplify the process 
of constructing agents for simulation-based training. By constructing smarter synthetic agents the 
dependency on human training providers can be reduced, while the availability and quality of training 
is improved.

Utility-Based Reinforcement Learning in Support of Simulation-Based Training

AI MLX



Page 68 B

Källström, Johan
Linköping University / Saab Aeronautics

AI MLX

Utility-Based Reinforcement Learning
in Support of Simulation-Based Training

Johan Källström, Linköping University, johan.kallstrom@liu.se
Department of Computer and Information Science

Team training in complex domains often requires a substantial amount of resources, e.g., instructors, role-players and vehicles. For this
reason, it may be difficult to realize efficient and effective training scenarios in a real-world setting. Instead, intelligent agents can be
used to construct synthetic, simulation-based training environments. However, building behavior models for such agents is challenging,
especially for the users of the training systems, who typically do not have expertise in artificial intelligence. In this project, we study how
reinforcement learning can be used to simplify the process of constructing agents for simulation-based training. By constructing smarter
synthetic agents the dependency on human training providers can be reduced, while the availability and quality of training is improved.

The Utility-Based Approach
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Abstract

Synthetic, learning agents can be used to automate simulation-
based training by replacing or assisting human instructors and
role-players. In this work, we use two types of learning agents: A
Synthetic Trainer Agent and a Scenario Adaptation Agent(3). The
Synthetic Trainer Agent participates as an actor in training
scenarios. By adjusting the utility function of the agent the
dynamics of the simulation can be adapted to current training
needs, The Scenario Adaptation Agent considers trainees’
proficiency in relation to training goals, and then populates
training scenarios with human and synthetic agents to maximize
improvement in trainees’ performance.

Automating Training Systems
In this work, we use Multi-Objective Markov Decision Processes
(MOMDPs) to model problems with multiple objectives,
represented by multiple reward signals. We develop Multi-
Objective Reinforcement Learning (MORL)(1) algorithms to solve
these problems. MORL allows synthetic agents to learn how to
prioritize among multiple, possibly conflicting objectives. The
priorities among the objectives of the learning agent are defined
by a utility function. Some advantages of MORL compared to
standard single-objective reinforcement learning algorithms is
that complex non-linear utility functions can be used, a greater
degree of flexibility in adapting to changes in goals or utility is
achieved, and a more diverse set of solutions can be found(2). In
MORL, there are two major types of optimization criteria:
scalarized expected returns (SER) and expected scalarized
returns (ESR). Training

Environment

DB

Interaction with
Human Trainees

_

Synthetic Trainer Agent

_

Scenario Adaptation Agent

Recording Infer User
Needs

Adapt Agent/Scenario 
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External Input, 
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𝑉𝑉𝑢𝑢𝜋𝜋 𝑠𝑠 = 𝑢𝑢 𝐸𝐸 ෍
𝑡𝑡=0

∞
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𝑉𝑉𝑢𝑢𝜋𝜋 𝑠𝑠 = 𝐸𝐸 𝑢𝑢 ෍
𝑡𝑡=0

∞

𝛾𝛾𝑡𝑡𝒓𝒓𝑡𝑡 |𝑠𝑠0 = 𝑠𝑠 , 𝑓𝑓𝑓𝑓𝑓𝑓 𝐸𝐸𝐸𝐸𝐸𝐸 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

As a case study, we use a simulation-based air combat training
system(4). In this system, in addition to dealing with multiple
training goals, learning agents also need to consider multiple
conflicting objectives related to the simulated scenario, e.g.,
tactical mission goals, resource consumption, and safety. To
learn adaptable policies, we use deep neural networks that are
conditioned on parameters of the agent’s utility function(5). By
letting the agent explore with different utility functions, the agent
can learn a set of Pareto optimal policies. Then, after learning,
the policy that maximizes the user’s current utility can be
selected.

Case Study

Utility parameters

Spatial State Input

CNN

Action Values
Vector State Input

MLP
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This work considers the problem of robust iterative Bayesian smoothing in nonlinear state-space 
models with additive noise using Gaussian approximations. Iterative methods are known to improve 
smoothed estimates but are not guaranteed to converge, motivating the development of more robust 
versions of the algorithms. The poster presents Levenberg-Marquardt (LM) and line-search extensions 
of the classical iterated extended Kalman smoother (IEKS) as well as the iterated posterior lineari-
sation smoother (IPLS). The IEKS has previously been shown to be equivalent to the Gauss-Newton 
(GN) method. We derive a similar GN interpretation for the IPLS.
Furthermore, we show that an LM extension for both iterative methods can be achieved with a simple 
modification of the smoothing iterations, enabling algorithms with efficient implementations.

Posterior linearisation smoothing with robust iterations

AI MLX
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Posterior linearisation smoothing
with robust iterations
Jakob Lindqvist

Iterative smoothing

The work presented here is based on an article submitted to Transactions on
Signal Processing and is also available as a pre-print [3]
Smoothing is a form of state estimation where a sequence of latent states
in a Markov process x1:K := (x1, x2, . . . , xK) are estimated from noisy mea-
surements y1:K := (y1, y2, . . . , yK).
The system is described by a state-space model with additive Gaussian noise

xk+1 = fk(xk) + qk qk ∼ N (0, Qk)
yk = hk(xk) + rk rk ∼ N (0, Rk). (1)

• Rauch-Tung-Stribel (RTS) smoothing computes a closed form solution
for linear (affine) motion f(·) and measurement h(·) models.

• General Gaussian RTS smoothers are a family of methods which linearise
the state-space models and then perform exact RTS smoothing of the ap-
proximate system. Members of this family are extended Kalman smooth-
ing (EKS) and SLR-smoothers.

• Linearisation is done around the best available estimate of the state, com-
monly the predicted estimates x̂k|k−1.

• Iterative smoothers repeatedly perform smoothing and use the posterior
estimates of the previous iteration for linearisation points. General Gaus-
sian smoothers have natural iterative extensions, e.g. the IEKS and the
IPLS.

• The smoothing problem can be viewed as optimisation problems. The
IEKS is equivalent to Gauss-Newton (GN) opt. of the neg. log. likelihood
of the state-space in eq. (1) [1].

Smoothers with robust iterations

Iterative smoothers might diverge and more robust versions are necessary. We take inspi-
ration from general optimisation and use the connection to GN optimisation to propose
such modified smoothers.

• We show that the iterations of IPLS of eq. (1) is equivalent to the iterations of GN
optimisation of the cost function

L
(i)
IP LS(x1:K) = 1

2

(
(x1 − x̂1|0)�P̂ −1

1|0 (x1 − x̂1|0)

+
K−1∑
k=1

(xk+1 − x̄k(xk))�
(

Qk + Ω(i)
k

)−1
(xk+1 − x̄k(xk))

+
K∑

k=1
(yk − ȳk(xk))�

(
Rk + Γ(i)

k

)−1
(yk − ȳk(xk))

)
, (2)

• We extend the results of [4] and show that Levenberg–Marquardt (LM) regularised
versions of the IEKS and IPLS can be achieved by extending eq. (1) with a pseudo-
measurement of the state:

x̂
(i)
k = xk + ek, ek ∼ N (0, (λ(i))−1S

(i)
k ) (3)

• We propose line-search versions of the IEKS and IPLS.
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Estimates

IEKS LM–IEKS LS–IEKS
IPLS LM–IPLS LS–IPLS
x1:K

Visualisation of a single realisation of a coordinated turn (CT) experiment with varying
bearings only measurements. The measurements at k = 50, 100, . . . , 500 are low noise
bearings measurements from a single sensor at (1, 1)� Note that for this particular real-
isation, it is only the LM-regularised smoothers, LM–IEKS and LM–IPLS that estimate
the general shape of the true trajectory.

Posterior linearisation

The choice of linearisation method defines a particular smoother with different properties.

• The EKS and IEKS use first-order Taylor approximation around the estimated mean.

• The IPLS use SLR based on the full distribution [2]:

Fk(x̂k, P̂k) = Ψ�
fk

P̂ −1
k (4a)

bk(x̂k, P̂k) = x̄k − Fkx̂k (4b)

Ωk(x̂k, P̂k) = Φfk
− AP̂kAT, (4c)

x̄k =
∫

fk(xk)p(xk)dxk

Ψfk
=

∫
(xk − x̂k)(fk(xk) − x̄k)�p(xk)dxk

Φfk
=

∫
(fk(xk) − x̄k)(fk(xk) − x̄k)�p(xk)dxk. (5)

Iterative smoothers can select a better linearisation point.

• Non-iterative methods use the predicted state (x̂k|k−1, P̂k|k−1), which do not take the measure-
ments yk:K into account.

• Ideally, linearisation would be done w.r.t. the posterior distribution of the state.

• Iterative smoothers repeatedly refine the estimates until the linearisation point is approximately
chosen w.r.t. the posterior.

Experimental results

We propose the robust smoothers LM–IEKS and LM–IPLS as well as the line-search based LS–IEKS
and LS–IPLS.

We report root mean square error (RMSE)
and normalised estimation error squared
(NEES) for the CT experiment above. The
plots show the metrics averaged over 100
independent simulations with the standard
error in the error bars.

• The IPLS based smoothers perform bet-
ter overall.

• The large spread in the IEKS metrics are
caused by some divergent realisations.

• The regularised version perform better
than the original methods. In particular,
they exhibit faster convergence.
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Discussion

• We present robust versions of the IEKS and IPLS smoothers. LM
regularisation is achieved by a simple modification of the state-
space model and the line-search versions are conceptually simple.

• The IPLS is robust in its original form since it linearises w.r.t. to
the full distribution and not just a point estimate, like the IEKS,
and benefits less from the robustness modifications.

• Making the linearisation based on the full distribution is more
computationally expensive but the added complexity is amelio-
rated somewhat by the observation that this group of smoothers
seems to require fewer iterations to converge to an acceptable tra-
jectory.
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A classical learning setting is one in which a student collects data, or observations, about a system, 
and estimates a certain quantity of interest about it. Correctional learning is a type of cooperative 
teacher-student framework where a teacher, who has knowledge about the system, has the possibility 
to observe and alter (correct) the observations received by the student in order to improve its esti-
mation. In this poster, we present our formulation of both the batch and online correctional learning 
problem - while the former is approached as an optimisation problem, for the latter we formulate the 
MDP and solve it using dynamic programming. Our results show that in both cases the variance of 
the estimate of the student is reduced with the help of the teacher.
An the end of the poster there is a short summary of our other research areas that we would be very 
glad to share with you. These go beyond the cooperative setting to adversarial, biologically-inspired, 
and medical decision-making scenarios.

A teacher-student framework for online correctional learning

AI MLX
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These problem can be overcome using 
advice from an expert agent, such as in 

• Transfer learning
• Learning from demonstration

• Sparse rewards
• Difficult reward function 

The student samples observations from the system

And uses them to estimate a model of the system

𝑦𝑦𝑘𝑘 ∼ 𝑝𝑝(𝑦𝑦|𝑦𝑦𝑘𝑘−1, … , 𝑦𝑦1; 𝜃𝜃0)

෠𝜃𝜃 ∈ argmin
𝜃𝜃∈Θ

𝐹𝐹(𝜃𝜃, 𝒪𝒪𝑁𝑁)

Setup:

Goal: Find the true parameter 𝜃𝜃0

A TEACHER-STUDENT FRAMEWORK
FOR ONLINE CORRECTIONAL LEARNING

Inês Lourenço  ineslo@kth.se        Rebecka Winqvist rebwin@kth.se
KTH Royal Institute of Technology, Sweden

Correctional Learning for Cooperative System Identification
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[2] I. Lourenço, R. Mattila, C. R. Rojas, and B. Wahlberg, “Cooperative System Identification via Correctional Learning,” 19th IFAC Symposium on System Identification (SYSID), 2021
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By altering the observations ෨𝒪𝒪𝑁𝑁
received by the student

For a consistent estimator, "improving" can mean:
෠𝜃𝜃 → 𝜃𝜃0 “fast” || ෠𝜃𝜃𝑵𝑵 − 𝜃𝜃0|| “small”

Approach

How can we improve the 
learning process of the student?

Motivation

Teacher-student framework

(Estimation
Algorithm)

Problem: 
Costly and time consuming to go from 
experimental design to resulting model

Cooperative 
System Identification

It is difficult to transmit knowledge:

• Abstract knowledge - e.g., driving a car
• Too complex - e.g., GTP-3 model
• Privacy constraints
• Different model classes or parametrizations
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No communication

Approach :
Operate in the space of induced probability distributions 
instead of the parameter space

True distribution

𝑝𝑝0
Observations 

collected
𝒪𝒪𝑁𝑁 = {𝑦𝑦𝑘𝑘}𝑘𝑘=1𝑁𝑁 Ƹ𝑝𝑝Estimated distribution with the

original observations:

෨𝒪𝒪𝑁𝑁 = { ෤𝑦𝑦𝑘𝑘}𝑘𝑘=1𝑁𝑁Teacher
modifies

Estimated distribution with the 

modified observations:
෤𝑝𝑝

Answer:
The teacher's goal is to minimize the
distance between the true distribution 𝑝𝑝0
and the student’s received distribution ෤𝑝𝑝

Methods & Preliminary Results

Roadmap & 
Milestones
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Example: Binomial systems

Correctional Learning

• Noisy expert

• Generalizations to e.g., filtering (state 

estimation) and reinforcement learning 

(policy learning).

• Connections to the optimal mass 

transport problem

min෨𝒪𝒪 V(𝑝𝑝0 , ෥𝑝𝑝)

s.t. ෤𝑦𝑦𝑘𝑘 ∈ 𝑌𝑌, for all ෤𝑦𝑦𝑘𝑘 ∈ ෨𝒪𝒪,

B 𝒪𝒪, ෨𝒪𝒪 ≤ 𝑏𝑏

distance

budget

෍
𝑘𝑘=1

𝑁𝑁

|𝑦𝑦𝑘𝑘 − ෤𝑦𝑦𝑘𝑘| < 𝑏𝑏

E.g., l2-norm

p0 − ෤𝑝𝑝 2

E.g., l1-norm

Cooperative problems

𝒪𝒪𝑁𝑁
= {𝑦𝑦𝑘𝑘}𝑘𝑘=1𝑁𝑁 StudentSystem

መ𝜃𝜃

𝜃𝜃0

෨𝒪𝒪𝑁𝑁

Teacher

𝑝𝑝 ෨𝑋𝑋 = 𝑥𝑥 =

𝑝𝑝 𝑋𝑋 = ෤𝑥𝑥 − 𝑏𝑏 , 𝑖𝑖𝑖𝑖 ෤𝑥𝑥 < 𝔼𝔼 𝑋𝑋
𝑝𝑝 𝑋𝑋 = ෤𝑥𝑥 + 𝑏𝑏 , 𝑖𝑖𝑖𝑖 ෤𝑥𝑥 > 𝔼𝔼 𝑋𝑋

෍
−𝑏𝑏

𝑏𝑏

𝑝𝑝 𝑋𝑋 = 𝔼𝔼 𝑋𝑋 + 𝑏𝑏𝑏 , 𝑖𝑖𝑖𝑖 ෤𝑥𝑥 = 𝔼𝔼 𝑋𝑋

ML estimator

Adversarial

Biologically-inspired

Medical
• Can we estimate biases in health care (e.g. doctors’ biases)? 

• Can we use estimates to make medical suggestions/interventions?

• Not assuming perfect policy: is it bias or simply bad policy?

var ෨𝜃𝜃 ≤ var ෠𝜃𝜃
As the budget increases, the teacher 

is able to increasingly accurately 
transfer its knowledge to the student

var{෩𝜃𝜃}
var ෡𝜃𝜃 → 0

The teacher is helping the student by 
reducing the variance of its estimator

𝑏𝑏 → 𝑁𝑁

We can quantify by how 
much, for discrete systems

States : s = (x1:k, bk, yk)
Actions : a = { keep yk, change to ෤𝑦𝑦𝑘𝑘}
Time-horizon : N 
Reward function : M - p0 − ෤𝑝𝑝𝑁𝑁 1
Constraint : number of times the action “change 
to ෤𝑦𝑦𝑘𝑘” is taken ≤ 𝑐𝑐𝑏𝑏
Transition probabilities : see [1]

BATCH SETTING [2] ONLINE SETTING [1]

𝜇𝜇∗ = ቐ
𝑎𝑎𝑘𝑘 = keep 𝑦𝑦𝑘𝑘, 𝑖𝑖𝑖𝑖 𝑥𝑥 𝑦𝑦𝑘𝑘 ≤ 𝜃𝜃0 𝑦𝑦𝑘𝑘
𝑎𝑎𝑘𝑘 = change to ෤𝑦𝑦𝑘𝑘 = 1 − 𝑦𝑦𝑘𝑘 otherwise

Forward and Inverse Decision-Making

Decision
CostSystem Sensor Estimator Policy

State Obser-
vations

Estimate

Inverse
estimator

Expert

Inverse
estimate

Research Goal 
& Questions

Answer:
The teacher’s optimal policy is to decide
at each moment whether or not to
change the current observations. Using
dynamic programming to solve the MDP.

• Can we estimate 
characteristics about an agent 
by observing its decisions?

• Can a teacher help a student 
perform its task?

Cooperative
• Can we enable intelligent agents to perceive time 

similarly to humans?

• Can we estimate the internal parameters of the agents’ 
frameworks from their behavior?
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Most semi-supervised learning methods over-sample labeled data when constructing training mi-
ni-batches. This paper studies whether this common practice improves learning and how. We compa-
re it to an alternative setting where each mini-batch is uniformly sampled from all the training data, 
labeled or not, which greatly reduces direct supervision from true labels in typical low-label regimes.
However, this simpler setting can also be seen as more general and even necessary in multi-task 
problems where over-sampling labeled data would become intractable. Our experiments on semi-su-
pervised CIFAR-10 image classification using FixMatch show a performance drop when using the 
uniform sampling approach which diminishes when the amount of labeled data or the training time 
increases. Further, we analyse the training dynamics to understand how over-sampling of labeled 
data compares to uniform sampling. Our main finding is that over-sampling is especially beneficial 
early in training but gets less important in the later stages when more pseudo-labels become correct. 
Nevertheless, we also find that keeping some true labels remains important to avoid the accumulation 
of confirmation errors from incorrect pseudo-labels.

An analysis of over-sampling labeled data in semi-supervised learning with 
FixMatch

AI MLX
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Motivation & Goals

Most semi-supervised learning methods construct mini-batches sampling its parts from a set of labeled samples and a set of unlabeled ones, then repeating
the first set that gets depleted [1,2,3,4], effectively over-sampling labeled data. We aim at studying how this common practice affects learning and compare
it to the simplest alternative: uniform sampling of all training data, labeled or not. Alternative approaches to over-sampling can be a requirement in certain
learning problems, e.g. in multi-task learning (MTL) samples are said to be labeled with respect to each of the tasks considered. In such case, a sample
can not be thought as being "labeled" in general. Thus there is no single, direct approach to over-sample "labeled" data in MTL.
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(a) Over-sampling labeled data (b) Uniform sampling (c) MTL ext. of over-sampling (d) MTL uniform sampling

Experiments

We compare both sampling approaches in semi-supervised image classification with CIFAR-10/100 using FixMatch [4] and analyze their training dynamics.
(O)ver-sampling - (U)niform sampling - 6x is longer training. Mean/std.dev. of top-1 test accuracy (%) over 5 runs.

CIFAR-10 40 labels 250 labels 4000 labels All labels

Supervised 36.77± 4.48 59.88± .73 87.39± .20 96.54± .11

FixMatch(O) 83.44± 6.68 93.01± .58 94.89± .16 -
FixMatch(U) 73.90± 8.04 91.42± .98 94.84± .05 -

FixMatch(O) 6x 85.40± 2.83 94.40± .78 - -
FixMatch(U) 6x 86.59± 4.14 94.00± .54 - -

CIFAR-100 2500 labels 10000 labels All labels

Supervised 47.26 67.58 82.38

FixMatch(O) 62.86 74.61 -
FixMatch(U) 55.53 71.83 -

• Obs. 1 Both approaches outperform strong supervised baselines.

• Obs. 2 Over-sampling outperforms uniform sampling. More labels or
longer training improve both and reduce the performance gap.

• Obs. 3 With few labels, uniform sampling is largely inefficient early in
training - does not use unlabeled samples, which are the large majority.

• Obs. 4 Over-sampling is especially beneficial early in training. High-
confidence predictions to be used as pseudo-labels are available earlier.

Mean/std.dev. over 5 runs for CIFAR-10: 250 labels, 4000 labels, solid line for over-sampling, dashed for uniform sampling.

Training without true labels in models already producing high rates of correct pseudo-labels eventually leads to collapse to random accuracy, likely due to the
accumulation of errors. This hints to the presence of some samples with true labels remaining important throughout training to anchor learning to the true task.

Conclusions

The relative success and generality of the simple uniform sampling ap-
proach enables its direct use in learning problems where over-sampling
labeled data is not possible, such as semi-supervised multi-task learn-
ing. Future research should be directed at 1) validating these results for
methods substantially different to FixMatch, 2) exploring other sampling
approaches for semi-supervised learning and especially in MTL.
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Convolutional Neural Networks (CNNs) have reigned for a decade as the de facto approach to auto-
mated medical image diagnosis, pushing the state-of-the-art in classification, detection and segmen-
tation tasks. Recently, vision transformers (ViTs) have appeared as a competitive alternative to CNNs, 
yielding impressive levels of performance in the natural image domain, while possessing several 
interesting properties that could prove beneficial for medical imaging tasks. In this work, we explore 
whether it is feasible to switch to transformer-based models for medical image classification as well, or 
if we should keep working with CNNs - can we trivially replace CNNs with transformers? We consi-
der this question in a series of experiments on several standard medical image benchmark datasets 
and tasks. Our findings show that, while CNNs perform better if trained from scratch, off-the-shelf 
vision transformers can perform on par with CNNs when pretrained on ImageNet, both in a supervi-
sed and self-supervised setting.

Should we Replace CNNs with Transformers for Medical Images?

AI MLX
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Convolutional Neural Networks (CNNs) have reigned for a decade as the de facto approach to automated medical image diagnosis, pushing the 
state-of-the-art in classification, detection and segmentation tasks. Recently, vision transformers (ViTs) have appeared as a competitive 
alternative to CNNs, yielding impressive levels of performance in the natural image domain, while possessing several interesting properties that 
could prove beneficial for medical imaging tasks. In this work, we explore whether it is feasible to switch to transformer-based models for 
medical image classification as well, or if we should keep working with CNNs - can we trivially replace CNNs with transformers? We consider 
this question in a series of experiments on several standard medical image benchmark datasets and tasks. Our findings show that, while CNNs 
perform better if trained from scratch, off-the-shelf vision transformers can perform on par with CNNs when pretrained on ImageNet, both in a 
supervised and self-supervised setting.
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We compare two mainstream models for classification:
• ResNet50 [2], as CNN representative.
• DeiT-S [3], for ViTs.

We consider three initialization strategies:
• Randomly initialized weights [4].
• Transfer learning using supervised ImageNet [1] pretrained weights.
• Self-supervised pretraining using DINO [5] on the target dataset, after

initialization as in (2).

To asses whether vision transformers are able to produce high quality
embeddings for segmentation we consider DeepLabV3 [14] and we simply
replace its ResNet50 encoder with DeiT-S.

Results

Figure 1: Performance comparison of RESNET50 and DEIT-S, two commonly used CNN-based

and ViT-based architectures. The comparison covers several standard medical image classifica-

tion datasets and different types of initialization including random init, IMAGENET pretraining,

and self-supervision using DINO. Performance is measured after fine-tuning on the dataset, as

well as using k-NN evaluation without fine-tuning. We report the median over 5 repetitions, error

bars represent standard deviation.

ISIC 2019[7,8,9] APTOS 2019 [6] PatchCamelyon [15,16] CheXpert [17] CBIS-DDSM [10,11]

Figure 3: Comparing saliency for RESNET50 (2
nd

row) and DEIT-S (3
rd

row) on medical

classification. Each column contains the original, a Grad-CAM visualization visualisation for

ResNet50 and the top-50% attention map of the CLS token of DEIT-S.

Conclusions
• ViTs can reach the same level of performance as CNNs in small medical

datasets, but require transfer learning in order to do so.
• ViTs can outperform CNNs using SSL pre-training when working with limited

number of samples, but only marginally.
• ViTs offer built in high-resolution saliency maps that can be used to better

understand the model's decisions.

Model ISIC2018, IoU Ò CSAW-S, IoU Ò
DEEPLAB3-RESNET50 0.802 ˘ 0.012 0.320 ˘ 0.008

DEEPLAB3-DEIT-S 0.845 ˘ 0.014 0.322 ˘ 0.028

Table 1: Medical image segmentation with DEEPLAB3 comparing CNN vs. ViT encoders.

ISIC2018 [7,12] CSAW-S [13]

Original Ground truth Predictions Original Ground truth Predictions

Figure 2: Medical image segmentation results comparing DEEPLAB3-RESNET50 (blue),

DEEPLAB3-DEIT-S (red). Ground truth mask appears in yellow. Note that the ViT segmen-

tations tend to do a better job of segmenting distant regions.
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Before applying a new decision-making policy in safety-critical domains, e.g., in healthcare, we need 
a reliable estimate of the policy’s value. While sampling from this target policy is not possible, we have 
access to samples from an unknown behavior policy which represents current practice. The problem 
of evaluating a target policy using data gathered under a behavior policy is known as off-policy evalu-
ation (OPE). Importance sampling (IS) is often used to perform OPE but can provide uncertain value 
estimates when there are significant differences between the policies. To better diagnose potential 
problems, we propose estimating the unknown behavior policy for IS using prototype learning. We 
apply this approach in the evaluation of policies for sepsis treatment, demonstrating that the learned 
prototypes give a condensed summary of differences between the policies.

Prototype-Based Off-Policy Evaluation
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Before applying a new decision-making policy in safety-critical domains, e.g., in healthcare, we need a reliable estimate of the policy’s 
value. While sampling from this target policy is not possible, we have access to samples from an unknown behavior policy which 
represents current practice. The problem of evaluating a target policy 𝜋𝜋 using data gathered under a behavior policy 𝜇𝜇 is known as off-
policy evaluation (OPE). Importance sampling (IS) is often used to perform OPE but can provide uncertain value estimates when 
there are significant differences between the policies. To better diagnose potential problems, we propose estimating the unknown
behavior policy for IS using prototype learning. We apply this approach in the evaluation of policies for sepsis treatment, 
demonstrating that the learned prototypes give a condensed summary of differences between the policies.

Background
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Abstract

Using prototypes. When 𝜇𝜇 is estimated with black-box models, 
it can be difficult to detect problems with the IS estimate. Instead, 
we propose performing OPE using a prototype-based estimate 
of 𝜇𝜇 [2]. The overall idea is to compute the probability 𝑝𝑝! 𝐴𝐴|𝐻𝐻 by 
comparing the history 𝐻𝐻 to a small set of prototype cases, which
are
• representative trajectories from the training data
• automatically selected by the learning algorithm
• interpretable by a domain expert.

Results
Importance sampling. Given an observational dataset of 
trajectories 𝐻𝐻 (sequences of contexts 𝑋𝑋 and actions 𝐴𝐴) and 
outcomes 𝑅𝑅, the standard IS estimator weights the outcomes by 
the density ratio of the target policy 𝜋𝜋 and the behavior policy 𝜇𝜇:
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Human evaluation. For )𝑉𝑉"# 𝜋𝜋 to be unbiased, overlap must be 
satisfied. That is, for all 𝑡𝑡, 𝑝𝑝2 𝐴𝐴(0𝐻𝐻( > 0 ⇒ 𝑝𝑝! 𝐴𝐴(0𝐻𝐻( > 0. 
Because the extent of overlap is unknown when 𝜇𝜇 is unknown, 
assessing the quality of )𝑉𝑉"# 𝜋𝜋 relies on evaluation by a domain 
expert. We identify three key questions in such an evaluation:
A. Which observations contribute to the IS estimate?
B. In which situations is overlap violated?
C. If )𝑉𝑉 𝜋𝜋 > )𝑉𝑉 𝜇𝜇 , what gives 𝜋𝜋 the edge?

What can go wrong? The figure shows an example of naïve 
OPE of two target policies for sepsis management: the AI 
Clinician [1] and a zero-drug policy. Weighted IS (WIS) was used 
with different models 4𝑝𝑝! of the unknown behavior policy. The 
zero-drug policy seems to be superior to the behavior policy, 
followed by physicians in data. But never treating patients with 
sepsis goes against intuition – can we trust these estimates?

Answering A & B. By evaluating 𝜇𝜇 and 𝜋𝜋 for each of the 
prototypes, we get a condensed summary of differences between 
the policies; see the figure for an example. We can identify 
groups of patients for which the ratio ⁄𝑝𝑝2 𝐴𝐴|𝐻𝐻 4𝑝𝑝! 𝐴𝐴|𝐻𝐻 ≫ 1 for 
certain actions (see prototype 7) and spot violations of overlap
(see prototype 3). Note that the zero-drug policy always predicts 
action (0, 0) with probability 1.

Answering C. The prototypes allows for computing prototype-
based contributions to the overall value 𝑉𝑉 𝜋𝜋 at each time step. 
In this way, we can see for which groups of patients a certain 
policy is most beneficial. The figure shows an example for 𝑡𝑡 = 2. 
Here, 𝑉𝑉( 𝜋𝜋|𝐽𝐽( = 𝑗𝑗 is the value of 𝜋𝜋 for prototype 𝑗𝑗 at time 𝑡𝑡 and 
𝑝𝑝2 𝐽𝐽( = 𝑗𝑗 is the probability of being assigned to prototype 𝑗𝑗 at 
time 𝑡𝑡.
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Speech synthesis is an application of Generative modelling, where the output is generally conditio-
ned on the input text. This is also referred as Text-To-Speech or TTS Systems. Current experiments 
on the state of the art speech synthesis systems takes days to realise if the energy hungry GPUs are 
chunking numbers properly to generate speech and can break down into gibberish. How can we make 
our current speech / audio experimentation iterations better and save time, effort and energy, without 
compromising with the quality of synthesised speech? We propose an autoregressive TTS system with 
a combination of Hidden Markov Models and Deep Neural Networks giving us a smaller size, compa-
rable naturalness, faster iterations, control over speaking rate.

Neural HMMs are all you need (for high-quality attention-free TTS)

AI MLX
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LLiisstteenn  ttoo  ssyynntthheessiisseedd  aauuddiioo  ssaammpplleess

NNeeuurraall  HHMMMMss  aarree  aallll  yyoouu  nneeeedd  ((ffoorr  hhiigghh--qquuaalliittyy  aatttteennttiioonn--ffrreeee  TTTTSS))
SShhiivvaamm  MMeehhttaa  –– ssuuppeerrvviisseedd  bbyy  GGuussttaavv  EEjjee HHeenntteerr aanndd  JJoonnaass  BBeesskkooww

Research Question
How can we make our current 
speech / audio experimentation 
iterations better and save time, 
effort and energy, without 
compromising with the quality of 
synthesised speech?

Text
Speech

Approach
We propose an autoregressive text-to-
speech (TTS) synthesis system that combines
the best characteristics of Hidden Markov
Models (HMMs) and Deep Neural
Networks (Mehta, 2022*)

Key advantages:
• Smaller size than state-of-the-art models.
• Achieves comparable naturalness as

state-of-the-art models
• Learns to speak and align much faster

with significantly less data withing 2000
iterations (see fig. below)

• Allows for easier control over speaking-
rate

• Fast training time allows for swift speech
research

I can learn to
speak faster
and with less
data

* Neural HMMs are all you need (for high-quality attention-free TTS) - Shivam Mehta, Éva Székely, Jonas Beskow, and 
Gustav Eje Henter – Submitted to ICASSP 2022.

I can speak
faster or slower
to help you
understand the
text efficiently,
especially useful
for people with
disabilities

The research is supported by Wallenberg AI, Autonomous Systems and Software Program (WASP) at Department of 
Speech, Music and Hearing (TMH)

I do not utter
gibberish

HMM Neural Network

Neural HMMBackground
Current state of the art speech 
synthesis systems (Tacotron 2):
• Takes days to realise if the energy 

hungry GPUs are chunking 
numbers properly enough to 
generate speech

• Can break down into gibberish
• Requires significant amount of data 

to work at all
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Solving geometric tasks involving point clouds by using machine learning is a challenging problem. 
Standard feed-forward neural networks combine linear or, if the bias parameter is included, affine 
layers and activation functions. Their geometric modeling is limited, which motivated the prior work 
introducing the multilayer hypersphere perceptron (MLHP). Its constituent part, i.e., the hypersphe-
re neuron, is obtained by applying a conformal embedding of Euclidean space. By virtue of Clifford 
algebra, it can be implemented as the Cartesian dot product of inputs and weights. If the embedding is 
applied in a manner consistent with the dimensionality of the input space geometry, the decision sur-
faces of the model units become combinations of hyperspheres and make the decision-making process 
geometrically interpretable for humans. Our extension of the MLHP model, the multilayer geometric 
perceptron (MLGP), and its respective layer units, i.e., geometric neurons, are consistent with the 
3D geometry and provide a geometric handle of the learned coefficients. In particular, the geometric 
neuron activations are isometric in 3D, which is necessary for rotation and translation equivariance. 
When classifying the 3D Tetris shapes, we quantitatively show that our model requires no activation 
function in the hidden layers other than the embedding to outperform the vanilla multilayer percep-
tron. In the presence of noise in the data, our model is also superior to the MLHP.

Embed Me If You Can: A Geometric Perceptron

AI MLX
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geometric 
neurons

hypersphere
neurons

original rotated in RR3 rotated in RR12

              
              
      
    
      
 
 
      

• Classification test:
• apply random 3D rigid transformations and perturb transformed Tetris shapes
• train and compare the performances of the proposed MLGP, baseline MLHP [2],

and vanilla MLP

• Isometry test:
• rigid transformations and the application of the learned model commute!

Table 1: Model accuracies on the test data (mean and std over 50 runs, %); values in parentheses 
represent the accuracy of the 10 best models selected based on the validation accuracy.

• We focus on 3D geometry: important for pose estimation —a 
prerequisite for grasping, 3D inpainting, augmented reality

• Toy example: 
• classify the 3D Tetris shapes [3]
• each shape is RR4×3

• We embed the input point-wise: each point to be embedded in RR5≅≅ MMEE3

• Consistent with the geometry of the input
• Leads to the change of the decision surface geometry→ geometric neurons
• Our extension of MLHP [2] – multilayer geometric perceptron (MLGP)

Table 2: Isometry test: the pretrained (original) and transformed MLGP accuracies on the original and 
transformed test split from the main dataset (mean and std over 10000 runs, %).

Problem

Experiments

• One hypersphere in RR12, learned as ෨𝑺𝑺 ∈ RR14

• Classifies a single input vector xx ∈ RR12

embedded in MMEE12 as 𝑿𝑿 ∈ RR14

• Four spheres in RR3, learned as ෩𝑺𝑺𝒊𝒊 ∈ RR5

• Each classifies the corresponding point
xx𝒊𝒊 ∈ RR3 embedded in MMEE3 as 𝑿𝑿𝒊𝒊 ∈ RR5

Hypersphere neuron [1]       vs        Geometric neuron (ours)

• How to represent such input for 
the baseline MLHP [2]?

• Naïve approach: 
• vectorize to RR12

• then embed in RR14 ≅≅ MMEE12

• Leads to geometric inconsistency!

Key features

References
[1] Banarer, V., et al. "The hypersphere neuron." ESANN. 2003.
[2] Banarer, V., et al. "Design of a multilayered feed-forward neural network using

hypersphere neurons." International Conference on Computer Analysis of Images and
Patterns. Springer, Berlin, Heidelberg, 2003.

[3] Thomas, N., et al. "Tensor field networks: Rotation-and translation-equivariant neural
networks for 3d point clouds." arXiv preprint arXiv:1802.08219 (2018).

Embed Me If You Can: A Geometric Perceptron
Pavlo Melnyk,   Michael Felsberg,   Mårten Wadenbäck

Computer Vision Laboratory, Linköping University, Sweden

xx𝑿𝑿 𝑧𝑧 = 𝑿𝑿T෨𝑺𝑺

෩𝑺𝑺

𝑧𝑧 =෍
𝑖𝑖=1

4

𝑿𝑿𝒊𝒊
T ෩𝑺𝑺𝒊𝒊

𝑿𝑿𝟏𝟏

𝑿𝑿𝟐𝟐

𝑿𝑿𝟑𝟑

𝑿𝑿𝟒𝟒

• Isomorphic implementation in the Euclidean space:

𝑿𝑿 = (𝑥𝑥1, … , 𝑥𝑥𝑛𝑛, −1,−
1
2 𝐱𝐱

𝟐𝟐) ∈ 𝐑𝐑n+2

𝑺𝑺 = (𝑐𝑐1,… , 𝑐𝑐𝑛𝑛,
1
2 (𝐜𝐜

𝟐𝟐 − 𝑟𝑟𝟐𝟐), 1) ∈ 𝐑𝐑n+2, learned freely as

෨𝑺𝑺 = (𝑠𝑠1, … , 𝑠𝑠𝑛𝑛+2) ∈ 𝐑𝐑n+2

• Our graphical interpretation in 2D
• The scalar product 𝑿𝑿T𝑺𝑺 determines the cathetus length! 
• Depends on the relative position of the point xx wrt the 

learned sphere (cc, r )

Geometric perceptron

{pavlo.melnyk,    michael.felsberg,  marten.wadenback}@liu.se

• We obtain a geometric interpretation 
in terms of multiple 3D spherical 
decision surfaces

• No activation function necessary: embedding is naturally non-linear

• Superior performance: to the baseline [2] (especially when the data are perturbed)
and MLP

• Geometric interpretability: learned spheres each classifying the respective input
point in the conformal space; possible inversion of the decision due to unembedding

• Complexity: typically, increased only with a factor of 1.6-2 compared to MLPs

• Isometric activations: crucial for rotational and translational equivariance

• We introduce a conformal embedding approach to problems in
Euclidean 3D space and investigate its performance on point clouds

• Our embedding is based on extended geometric modeling of multiple
points compared to standard MLPs and hypersphere neurons [1, 2]

Contributions
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AI has raised concerns on whether its use follows ethical principles. We present a new formal langua-
ge to model ethical requirements. It is statically typed, object-oriented, purely functional, and can be 
used to create efficient prototypes.

A Language to Bridge the Ethical Gap Between Humans and Machines

AI MLX
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A new object-oriented purely functional

language formalizes ethical requirements

for AI systems.

A Language to Bridge the Ethical Gap Between Humans and
Machines
Julian Alfredo Mendez — �	��
�������
�	�	���

Umeå University

Introduction
AI has raised concerns on whether its use follows
ethical principles. Our research questions are:
•Can we design a readable language to express
ethical requirements to monitor AI systems?

•Can the specifications be efficiently prototyped?

Material and Methods

Why a new language?
The language needs to be not only expressive to
model ethical requirements, but also easier and
clearer than other similar languages, to agree on
ethical requirements.

Language properties tomodel ethical requirements:

the language should ... we make it ...
be easy to understand of simple syntax
be applicable to many domains expressive
prevent side effect errors purely functional
have powerful design tools object-oriented
detect errors in compile time statically typed
be efficient and easy to integrate JVM

Results and Discussion

We designed a new language that provides:

•Classes (to model entities)
•Class extensions (Open-Close Principle)
•Constants and functions (inside classes)
•Standard arithmetic operations
•Standard basic types
• Lambda expressions
•Class constructors (to instantiate objects)
•Pattern matching (for class deconstruction)

The descriptions are translated to Scala code, and
then to Java Virtual Machine (JVM) bytecode.

Example

��
�� RequirementMonitor = {

�
� pricing_agent: PricingAgent

get_price (customer: Customer, flight: Flight, date_in_days: Int): Int =
pricing_agent.get_price (customer, flight, date_in_days)

}

��
�� Report2 (compliant: Boolean, old_price: Int, new_price: Int)

��
�� Requirement2Monitor
�	����� RequirementMonitor = {

acceptable_yearly_increase = 1.25

get_report (customer: Customer, flight: Flight, date_in_days: Int): Report2 =
���

old_price = get_price (customer, flight, get_a_year_before (date_in_days) )
new_price = get_price (customer, flight, date_in_days)
�� Report2 (new_price <= old_price * acceptable_yearly_increase,
old_price, new_price)

get_a_year_before (date_in_days: Int): Int =
date_in_days - 365

}

State of the Art

We compared available programming languages:

language version A B C D E F
Agda 2.6.2 Yes Yes No Yes No 109

Clojure 1.10.3 Yes No No No Yes 109

Coq 8.13.2 Yes Yes No Yes No 107

Haskell 8.6.5 Yes Yes No Yes No 108

Idris (2) 0.4.0 Yes Yes No Yes No 1010

OCaml 4.08.1 Yes No Yes Yes No 109

Prolog 7.6.4 No No No No No 108

Python 3.8.10 No No Yes No No 108

Scala 3.0.2 Yes No Yes Yes Yes 1010

our language 0.12.0 Yes Yes Yes Yes Yes 1010

References: A. dominantly functional B.
purely functional (no imperative features) C.
object-oriented D. statically typed E. JVM
integration F. repetitions in 30 s

Conclusion and Future Work
This language is very expressive and can
model ethical requirements. We plan to
include verification of pieces of code using
Coq. Its readability, its expressiveness, and its
self-consistency help to bridge the ethical gap
between humans and machines.

umu.se/staff/julian-mendez
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Historical Data: Simulators make unique benchmarks for causal effect estimation since they do not 
rely on unverifiable assumptions or the ability to intervene on real-world systems, but are often too 
simple to capture important aspects of real applications. We propose a simulator of Alzheimer’s di-
sease aimed at modeling intricacies of healthcare data while enabling benchmarking of causal effect 
and policy estimators. We fit the system to the Alzheimer’s Disease Neuroimaging Initiative (ADNI) 
dataset and ground hand-crafted components in results from comparative treatment trials and obser-
vational treatment patterns. The simulator includes parameters which alter the nature and difficulty 
of the causal inference tasks, such as latent variables, effect heterogeneity, length of observed history, 
behavior policy and sample size. We use the simulator to compare estimators of average and conditio-
nal treatment effects.
    Decision Making: In personalized medicine, we can assume that there exists a patient latent state 
$Z\in{R^d}$ which we aim to learn from historical data, and once we learn it, we can recommend 
personalized near-optimal treatments. In searching for treatments, we usually are constrained in the 
number of trials that we can perform. We formulate a problem of near-optimal treatment search in 
a latent bandits setting where: $A\in \{1, ..., k\}, \mu_Z \in R^k$, and budget $T = \beta K$, where 
$\beta$ is reasonably small. We apply pure exploration theory to investigate how to present a fixed 
confidence for near-optimal treatments with a budget in the order  $T = \beta K$, where $\beta$ is 
reasonably small. We run experiments and simulations with realistic Alzheimer’s data from the ADCB 
environnment.

Machine learning for improved decision making based on historical data

AI MLX
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Machine learning for improved decision 
making in healthcare with historical data 

Newton Mwai Kinyanjui, Fredrik D. Johansson, 
Computer Science and Engineering Department, Chalmers

Healthcare organizations are eager to improve decision making using machine learning applied to records of past decisions 
and outcomes. Electronic healthcare records are constantly updated with decisions on tests, treatments, procedures and drug 
prescriptions. If used appropriately, machine learning has the potential to use this data to personalize and improve medicine. 
Key challenges are a) access to highly realistic observational simulation data in healthcare, and b) ensuring that machine 
learning systems do not pick up on associations that are not causally related to the results of decisions,  to ensure robust 
decisions when the systems are applied to new problems or new domains.

Decision Making
Personalized medicine with observational data 

and  latent bandits*

References
1. Kinyanjui, Newton Mwai, and Fredrik D. Johansson. "ADCB: An 

Alzheimer's disease benchmark for evaluating observational 
estimators of causal effects.” ML4H 2021 - extended abstract 
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2. Meemansa Sood, et al.  “Realistic simulation of virtual multi-
scale, multi-modal patient trajectories using bayesian networks 
and sparse auto-encoders”. Scientific reports, 10(1):1–14, 
2020.

3. Hernandez, Santiago, et al. "Pharmacological treatment of 
Alzheimer's disease: effect of race and demographic variables." 
Journal of Alzheimer's Disease 19.2 (2010): 665-672.

Motivation & Research goals

Evaluating learned decision-making policies and observational
estimates of causal effects is challenging, as it relies on strong
assumptions and access to large samples, hence the research
community often turns to simulators for benchmarking which often
lack realism.

We propose a new benchmark for evaluating estimators of causal
effects that combines the strengths of data-driven simulators with
those of hand-crafted components by fitting a longitudinal causal
model of patient variables to real data and providing tunable
parameters for the generated data.

Historical Data
Alzheimer's Disease Causal estimation Benchmark 

(ADCB)
In personalized medicine, we can assume that there exists a

patient latent state Z ∈ {Rd} which we aim to learn from historical
data, and once we learn it, we can recommend personalized
near-optimal treatments. As an example of a latent state, it is
believed that there are multiple subtypes of Alzheimer's disease
which could respond differently to the same treatment.

In searching for treatments, we are usually constrained in the
number of trials that we can perform. We formulate a problem of
near-optimal treatment search in a latent bandit setting where:
treatments (arms) A ∈ {1, ..., k} and budget T = βK, where β is
reasonably small.

We apply pure exploration theory to investigate how to present
a fixed confidence for near-optimal treatments with a budget in
the order T = βK, where β is reasonably small. We run
experiments and simulations with realistic Alzheimer's data from
the Alzheimer’s Disease Causal estimation Benchmark (ADCB)
environment.
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We assume the above causal graph based on previous literature (Sood et. al., 2020) and
domain practitioner input. For each continuous(or discrete) attribute, a regression(or
classification) model is fit with respect to its parents. We fit sequences autoregressively.

Identify an 𝜖𝜖 – optimal arm (treatment)

P(RAT ≤ RA - 𝜖𝜖 ) ≤ 𝛿𝛿

Subject to T = βK, where β is reasonably small
How does latent state information help us identify such an arm?
* Project ongoing

Tunable parameters

Goal: Pure exploration with a very small budget

μ – Behavior policy ∈ {Random, Diagnosis-based, 
Hernandez-based (Hernandez et al.(2010))}

𝜖𝜖 – Overlap parameter ∈ [ 0, 1] 
𝛾𝛾 – Treatment Effect Heterogeneity ≥ 0
N – Number of Samples ≥ 0
T – Sample trajectory length (history length) ∈ {0, 12, 24, …, 120}

Left: Results of using generated data
from ADCB in comparing causal effect
estimators based on Conditional
Average Treatment Effects Error for
Number of patient samples, N
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Large language models are known to suffer from the hallucination problem in that they are prone to 
output statements that are false or inconsistent, indicating a lack of knowledge. A proposed solution 
to this is to provide the model with additional data modalities that complements the knowledge obtai-
ned through text. We investigate the use of visual data to complement the knowledge of large language 
models by proposing a method for evaluating visual knowledge transfer to text for uni- or multimodal 
language models. The method is based on two steps, 1) a novel task querying for knowledge of memo-
ry colors, i.e. typical colors of well-known objects, and 2) filtering of model training data to clearly se-
parate knowledge contributions. Additionally, we introduce a model architecture that involves a visual 
imagination step and evaluate it with our proposed method. We find that our method can successfully 
be used to measure visual knowledge transfer capabilities in models and that our novel model archi-
tecture shows promising results for leveraging multimodal knowledge in a unimodal setting.

Transferring Knowledge from Vision to Language: How to Achieve it and how 
to Measure it?

AI MLX
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Transferring Knowledge from Vision to Language: How to Achieve it and how to Measure it?
Tobias Norlund*,  Lovisa Hagström*,  Richard Johansson

Chalmers University of Technology

Motivation & Summary
Despite the ability of language models to learn and 
hold large quantities of structural knowledge [1], LMs 
are are also known to suffer from the hallucination 
problem in that they are prone to output statements 
that are false or inconsistent, indicating significant 
knowledge gaps [2]. A hypothesis is that this  
knowledge in many cases simply is missing in the large 
text corpora typically used for training the models, due 
to e.g  reporting bias [3]. In such cases certain types of 
knowledge might also be more readily available in a 
different data modality.

In this work, we investigate visual knowledge 
transfer, i.e. to which extent language models can 
incorporate and textually express knowledge 
originating from a visual modality.

We investigate this by constructing a novel 
cloze-style task testing knowledge of memory colors 
for common objects (such as blood is red, a lemon is 
yellow etc). We also build a large vision-and-language 
dataset used for self-supervised training, and by careful 
filtering we make sure the color information is only 
available through the images and not the text.

Finally, we compare two strategies for how to most 
effectively query the trained multimodal language 
model for this visual knowledge.

We show that language models are able to texually 
express knowledge obtained from a visual modality, 
as a result from multimodal self-supervised training.

Querying strategies Multimodal Self-supervised Training:
CLIP-BERT

We compare two strategies for querying the 
language models for this visual knowledge, 
through [MASK] token prediction.  
 a) Implicit: The visual knowledge is 
retrieved from the trained parameters of the 
language model. 

Results
● ①: The original (text-only) BERT-base 

performs poorly on this task, close to 
majority baseline 

● ① vs ⑥: Continue MLM training of 
BERT-base on the text part of our multimodal 
dataset improves performance slightly 
despite filtering

● ⑥ vs ⑧: Adding images to training improves 
performance significantly, showing effective 
visual knowledge transfer! 

● ③ vs ④ and ⑦ vs ⑧: The explicit querying 
strategy performs better than the implicit 

①

②

③

④

⑤

⑥

⑦

⑧

⑨

We propose a novel visual-and-language model 
denoted CLIP-BERT, where the image encoder of the 
pre-trained CLIP [4] model is used to represent the 
image before appended to the input of a BERT-base 
model. We train this model using MLM on our 
vision-and-language dataset, and seek to evaluate how 
this affects performance on the memory colors task.

Task: Memory colors
With the help of 11 human annotators, we have created 
a dataset of 109 common objects and their memory 
colors, with high annotator agreement.

 b) Explicit: We use the text encoder of the 
CLIP model to "imagine" a visual 
representation of the query text and append to 
the transformer input. This way the visual 
knowledge can partly be retrieved from this 
input, as well as from the trained model 
parameters.

* Equal contribution
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Algorithms developed for the purpose of handling label noise in supervised training, are commonly 
evaluated in terms of accuracy. However, robustness in accuracy is not sufficient in applications where 
reliable uncertainty estimates are critical. For an input-dependent noise model, we investigate the 
effect of label noise on strictly proper loss functions as well as the set of robust loss functions charac-
terised by noise-insensitive, asymptotic risk minimisers. We find that not only robust, but also strictly 
proper loss functions offer asymptotic robustness in accuracy. However, neither guarantee that the 
final model is calibrated. Moreover, both strictly proper and robust loss functions are susceptible to 
overfitting in practice.

Robustness and reliability when training with noisy labels

AI MLX
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Robustness and reliability when training
with noisy labels

Amanda Olmin, Linköping University
Department of Computer and Information Science

Supervisors: Fredrik Lindsten (LiU) and Lennart Svensson (Chalmers)

Motivation

Supervised training of deep learning models is highly dependent upon labelled data. Curating a (possibly large) annotated
training data set is costly and time-consuming and the risk of incorporating label noise is imminent. Label noise can hurt
model performance by: (i) shifting the asymptotic risk minima towards the conditional distribution over noisy, instead of clean,
labels, and (ii) increasing the risk of overfitting (Zhang et al., 2017). While algorithms robust to label noise are commonly
evaluated in terms of accuracy, this is not enough if reliable uncertainty estimates are critical. We establish this idea and
investigate the effect of label noise on model performance through a critical analysis of robust loss functions.

Simple non-uniform label noise

For noisy label Ỹ ∈ Y, true label Y ∈ Y and input variable X ∈ X ,
simple non-uniform label noise (Ghosh et al., 2017) is defined by

�(Ỹ = ỹ | Y = y,X = x) =

{
1− ω(x), if ỹ = y
ω(x)
K−1 , otherwise

with Y = {1, . . . ,K} and noise parameter 0 ≤ ω(x) < K−1
K .

Robust loss functions

A loss function � is robust (Ghosh et al., 2017) to label noise if for all
asymptotic minimisers f∗ of the clean risk, R�, it holds that

R̃�(f
∗) ≤ R̃�(f), ∀f ∈ F

where R̃� is the risk under the noisy data distribution.

Strictly proper loss functions recover the true conditional
f∗(x) = �(Y | X = x) if labels are clean, but are not robust.

Symmetric loss functions are robust under simple non-uniform
label noise (Ghosh et al., 2017). They satisfy

K∑
k=1

�(q, k) = C, ∀x ∈ X , ∀q ∈ ∆K−1

for some constant C.

Training dynamics

We imagine two phases of training a model f : X → ∆K−1.

1. The training trajectory "aims" towards the true risk minimiser f∗

(or f̃∗ if labels are noisy) and passes "close" to it.

2. The training trajectory diverges and the model overfits to the data.

(a) Strictly proper loss, f̃∗ �= f∗

f0
f∗

f̃∗ F

(b) Robust loss, f̃∗ = f∗

f0
f∗

F

Robustness does not imply reliability

Under simple non-uniform label noise, we find that strictly proper and
symmetric loss functions

• are robust to label noise in accuracy,

• do not result in calibrated models (uncertainty estimates unreliable),

The robustness condition is not sufficient if reliable uncertainty
estimates are critical.

• are both susceptible to overfitting in practice.
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Figure: Experiments on MNIST
with simple non-uniform label noise,
ω(x) = 0.3 ∀x. The empirical robust-
ness of Mean Absolute Error (b) has
been attributed to its theoretical ro-
bustness (Ghosh et al., 2017). How-
ever, the theory does not account for
overfitting. In practice, the overfitted
model (c) achieves a smaller loss (d).
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(d) MAE loss

Calibration-based strictly properness

Let FC ⊆ F be the set of calibrated models. The loss function �, with
asymptotic risk minimisers f∗, is calibration-based strictly proper if

f∗ ∈ FC , ∀f∗ ∈ F,

for all �(Y | X) and for all input distributions µX .

A loss function that is both robust and calibration-based
strictly proper will preserve accuracy and ensure reliability.
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Machine learning methods on graphs have proven useful in many applications due to their ability 
to handle generally structured data. The framework of Gaussian Markov Random Fields (GMRFs) 
provides a principled way to define Gaussian models on graphs by utilizing the sparsity structure. We 
propose a highly scalable method for defining GMRFs on general graphs based on the layer structure 
of Deep GMRFs. The parameters of the resulting model can be trained efficiently using variational 
inference and existing software for Graph Neural Networks. For a Gaussian likelihood exact Bayesi-
an inference is possible for predictions. The usefulness of the model and the multi-layer structure is 
verified by experiments on a number of synthetic and real world datasets.

Deep Gaussian Markov Random Fields for General Graphs

AI MLX
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GeneralGraphsa
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aOngoing research

Test

Background: Gaussian Markov Random Fields

Gaussian Markov Random Fields (GMRFs)

• Graphical models where the nodes
x are jointly Gaussian [1]

• Conjugate prior to Gaussian like-
lihood p(y|x) = N

(
y
∣∣x, σ2I

)

– Posterior p(x|y) analytically
tractable, also a GMRF!

Deep GMRFs (DGMRFs) [2]

• GMRF x defined implicitly by linear map g

z = g(z) = Gx+ b, z ∼ N (0, I) (1)

• g defined as a combination of L simpler layers g = g(L)◦g(L−1)◦· · ·◦g(1)

• Originally restricted to lattice-graphs (image-structured data)

Method: Graph DGMRF

• Consider graph G with adjacency matrix A and degree matrix
D = diag([d1, d2, . . . , dN ]⊺)

• Define a layer construct h(l) = g(l)(h(l−1)) = G(l)h(l−1) + b(l)

G(l) = αlD
γl + βlD

γl−1A (2)

b(l) = bl1 (3)

– bl, αl, βl and γl are trainable
parameters

• Closely corresponds to Graph Neural Network (GNN) formulation. Ex-
isting frameworks can be utilized for automatic differentiation and GPU
acceleration.

• Variational training, maximizing the Evidence Lower Bound (ELBO)

• Training requires efficient evaluation of log
∣∣det (G(l)

)∣∣. We develop two
solutions:

– Exact method based on pre-computing the eigenvalues of D−1A

– Scalable approximate method based on reformulating log-determinant
as a power series

Experiments

• Experiments on inpainting problems where we train on 50% of nodes and
evaluate on remaining 50%

Synthetic GMRF Dataset

• Sample from known GMRF cre-
ated as random mix of multiple
DGMRFs

• 1-5 layer DGMRFs trained and
evaluated
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Posterior mean Posterior marginal std.-dev.

Wikipedia Graph

• 11 631 Wikipedia pages as nodes

• Edges are links between pages

• Target y is log average monthly
traffic

• CRPS, probabilistic metric taking
uncertainty into account

RMSE CRPS
Baselines
Graph GP 2.169 1.251
DGP (GNN) 1.293 0.769
I-GMRF 1.526 0.939
DGMRF
1 Layer 1.312 0.704
3 Layer 1.230 0.652
5 Layer 1.179 0.620

⇒ Additional experiments on weighted graphs, use of node features and
scaling to > 105 nodes

References
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in Monographs on statistics and applied probability. Chapman & Hall/CRC, 2005.

[2] P. Sidén and F. Lindsten. Deep gaussian markov random fields. In Proceedings of the 37th
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Summary

• Layered Gaussian model for graph-structured data

• Efficient variational training using Graph Neural Network
framework

• Exact Bayesian inference gives principled uncertainty esti-
mates
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Logical reasoning is a fundamental aspect of human behaviour, and this is an important criterion to 
build human-like reasoning in intelligent autonomous multi-agent systems. So far, the field of know-
ledge representation and reasoning has employed logic-based symbolic techniques to mimic the 
challenging task of incorporating human-like reasoning in multi-agent systems. However, the field of 
machine learning has shown increasing interest to take on this challenge. In this research, we describe 
a methodology that is based on Constraint Logic Programming that enables autonomous agents to 
generate explanations and logic-based reasoning from a knowledge base and monitor how explana-
tions advance over time. Whilst this preliminary work addresses key limitations such as scalability 
and adaptability, we strongly emphasise the need for logic-based reasoning in multi-agent systems for 
interpretability and transparency in their behaviour.

Towards Explainable Agency in Multi-Agent Systems Using 
Constraint Programming

AI MLX
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Towards Explainable Agency in Multi-Agent Systems Using 
Constraint Programming

Minal Suresh Patil, Umeå universitet
Main Supervisor: Kary Främling

Logical reasoning is a fundamental aspect of human behaviour, and this is an important criterion to build human-like reasoning in 
intelligent autonomous multi-agent systems. So far, the field of knowledge representation and reasoning has employed logic-based 
symbolic techniques to mimic the challenging task of incorporating human-like reasoning in multi-agent systems. However, the field of 
machine learning has shown increasing interest to take on this challenge. In this research, we describe a methodology that is based on 
Constraint Logic Programming that enables autonomous agents to generate explanations and logic-based reasoning from a knowledge 
base and monitor how explanations advance over time. Whilst this preliminary work addresses key limitations such as scalability and 
adaptability, we strongly emphasise the need for logic-based reasoning in multi-agent systems for interpretability and transparency in 
their behaviour.

Method
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Motivation & Research Goals

Results
The optimal linkage between explainability and 
causation, which is the cornerstone to effective 
human-agent explainability one of the most 
important ultimate goals of explainable AI 
systems. Explainability pertains to a system 
that has the ability to explain itself to others in 
a natural language. In other words, a system 
should be able to communicate the reasoning 
behind its decisions [1]. Cause and effect is 
crucial for making ethical decisions. 

The logical way:
Logic can assist with technical aspects of the 
problems. As a consequence, we propose a 
Constraint Logic Programming (CLP) for 
machine explainability.. It's an approach that is 
indeed innately interpretable and it is easy to 
incorporate domain knowledge.

Particularly compared to traditional 
techniques, CLP has a significant 
advantages:

● Because logic programs are 
expressive, CLP systems can 
understand intricate relational 
theories.

● Domain-Knowledge can also be 
used by CLP systems to learn 
domain specific constraints.

● Because domain knowledge is used 
as a type of inductive bias, CLP 
systems might generalize from a 
small number of examples.

● CLP systems are designed to 
promote continuous and transfer 
learning.
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In the setup of Federated Learning[1], and more particularly, when using the FedAvg algorithm, all 
the weights of the locally trained model get averaged in each round. In this setup, the global model is 
being sent to the ready local devices and they, later, send back the locally trained model to the central 
server for the next averaging step. Though this setup claims to ensure the security and privacy of the 
local data at the devices, some research has shown that this algorithm is still prone to membership 
attack[2], model reconstruction attack and backdoor attack. Our approach introduces a new federa-
ted learning framework T\’opos-FL on the basis of subspace and correlation analysis upon the layers 
of the machine learning models. It mitigates several drawbacks of FedAvg. In particular, model and 
data reconstruction attacks, and membership attack. In our approach, a conjugated view of the layers 
is being transferred to the central server where the update is subject to maximizing the correlation 
between the global and the local models.

A Subspace matched framework for Federated Learning

AI MLX
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Motivation & Research Goals

In the setup of Federated Learning[1], and more particularly, when using the FedAvg algorithm, all the weights of the locally trained model get
averaged in each round. In this setup, the global model is being sent to the ready local devices and they, later, send back the locally trained model
to the central server for the next averaging step. Though this setup claims to ensure the security and privacy of the local data at the devices, some
research has shown that this algorithm is still prone to membership attack[2], model reconstruction attack and backdoor attack. Our approach
introduces a new federated learning framework Tópos-FL on the basis of subspace and correlation analysis upon the layers of the machine learning
models. It mitigates several drawbacks of FedAvg. In particular, model and data reconstruction attacks, and membership attack. In our approach, a
conjugated view of the layers is being transferred to the central server where the update is subject to maximizing the correlation between the global
and the local models.

Methods Selected Results

Result of the reconstruction attack in the Tópos-FL setup for CIFAR-
10

Result of the reconstruction attack in the FedAVG setup for
CIFAR-10

Result of the membership attack in the Tópos-FL setup for CIFAR-10

Result of the membership attack in the FedAVG setup for
CIFAR-10
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The weighted minimum mean square error (WMMSE) algorithm was proposed to provide a locally 
optimum solution to the otherwise NP-hard weighted sum rate maximization beamforming problem, 
but it is still prohibitively complex. With the success of deep unfolding in trading off complexity and 
performance, we propose to apply deep unfolding to the WMMSE algorithm. With respect to tra-
ditional end-to-end learning, deep unfolding incorporates expert knowledge, with the benefits of 
well-grounded architecture selection, fewer trainable parameters, and better explainability. However, 
the classical formulation of the WMMSE algorithm given by Shi et al. is not amenable for deep unfol-
ding due to matrix inversions, eigendecompositions, and bisection searches. Therefore, we present an 
alternative formulation that circumvents these operations. By means of simulations, we show that the 
deep unfolded WMMSE algorithm performs on par with the original WMMSE algorithm, at a lower 
computational load.

Deep Weighted MMSE Downlink Beamforming

AI MLX
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https://github.com/lpkg/WMMSE-deep-unfolding/tree/ICASSP2021
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Problem Formulation

MU-MISO interference downlink channel

Single base station with M transmit antennas

N single-antenna users

Linear beamforming

user j

user i

Received signal of user i

yi = hH
i vixi +

N∑
j=1,j ̸=i

hH
i vjxj + ni

hi ∈ CM : channel, ni: noise

vi ∈ CM : beamformer vector

xi: transmitted symbol

V ≜ [v1,v2, . . . ,vN ]
T ∈ CN×M

We address the NP-hard problem

max
V

N∑
i=1

αi log2 (1 + SINRi) (1a)

s.t. Tr(V V H) ≤ P (1b)

– log2 (1 + SINRi) is the rate of user i

–αi is the priority of user i (assumed to be known)

We want to comply with the power consumption and la-

tency constraints at the base station

WMMSE algorithm

It works on an equivalent reformulation

min
u,w,V

f (u,w,V ) (2a)

s.t. Tr(V V H) ≤ P (2b)

f is jointly nonconvex over (u,w,V )

f is convex in each optimization variable

ITERATIVE ALGORITHM PSEUDOCODE

repeat

u = argminξ f (ξ,w,V )

w = argminξ f (u, ξ,V )

V = argminξ f (u,w, ξ) s.t. Tr(ξξH) ≤ P

until convergence

Guaranteed to converge to a local optimum

Relatively high computational complexity

Deep unfolding

Goal: trade off complexity and performance in presence of

computational constraints and latency constraints for itera-

tive algorithms

Key idea: build and train a neural network whose structure

is determined by the iterative algorithm

It incorporates domain knowledge

Making the WMMSE unfoldable

The update equations of u and w can be easily mapped to

neural network layers

Conversely, the update of V , which is obtained by solving

min
ξ

f (u,w, ξ) (3a)

s.t. Tr(ξξH) ≤ P, (3b)

requires a matrix inversion, an eigendecomposition, and

a bisection search

We propose to solve (3) with the projected gradient de-

scent (PGD) approach

We truncate the sequence of PGD steps to K

UNFOLDABLE WMMSE ALGORITHM PSEUDOCODE

for l = 1, . . . , L

u = argminξ f (ξ,w,V )

w = argminξ f (u, ξ,V )

for k = 1, . . . , K

V (k) = ΠC{V (k−1) − γ∇f (V (k−1))}

ΠC{V } =

{
V , if Tr(V V H) ≤ P
V

∥V ∥

√
P , otherwise.

(4)

We prove that the unfoldable WMMSE retains the same

convergence guarantees of the WMMSE

Deep unfolded WMMSE

V

H

Ω
u1

Ψ
w1

V
(K)
1

−γ
(k)
1

∇ × + ΠC

kth PGD step

The step sizes of the PGD (Γ) are the trainable parameters,

where Γ = (γ1,γ2, . . . ,γL)

We minimize the global objective loss function

L(Γ) = − 1

Ns

Ns∑
n=1

L∑
l=1

fWSR(Hn,V l;Γ) (5)

where Ns is the size of the training set

Numerical Results
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WMMSE

Deep unfolded WMMSE

Deep unfolded WMMSE - same γ

WMMSE at convergence

• h is drawn from a Rayleigh distribution

• We initialize V with matched filtering

• We initialize γ
(k)
l = 1 for k = 1, . . . , K

and l = 1, . . . , L

• We set αi = 1 for i = 1, . . . , N

• For each combination of M , L, K, and
SNR we train a different network

• We adopt Adam optimizer
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Monocular depth estimation is a highly challenging problem that is often addressed with deep neural 
networks.
While these use recognition of high level image features to predict reasonably looking depth maps the 
result often has poor metric accuracy.
Moreover, the standard feed forward architecture does not allow modification of the prediction based 
on cues other than the image.
In this paper we relax the monocular depth estimation task by proposing a network that allows us to 
complement image features with a set of auxiliary variables. These allow disambiguation when image 
features are not enough to accurately pinpoint the exact depth map and can be thought of as a low 
dimensional parameterization of the surfaces that are reasonable monocular predictions.
By searching the parameterization we can combine monocular estimation with traditional photo- 
consistency or geometry based methods to achieve both visually appealing and metrically accurate 
surface estimations.
Since we relax the problem we are able to work with smaller networks than current architectures.
In addition we design a self supervised training scheme, eliminating the need for ground truth image-
depth-map pairs.
Our experimental evaluation shows that our method generates more accurate depth maps and genera-
lizes better than competing state-of-the-art approaches.

Parameterization of Ambiguity in Monocular Depth Prediction

AI MLX
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Introduction

Dense depth or disparity estimation is a classical problem in computer vision .
Traditional methods use stereo (or multi-camera) setups and attempt to match ev-
ery pixel in the reference image to a corresponding pixel in a neighbouring image
using appearance cues. While the accuracy of the recovered depth is often very
high for correctly matched pixels, ambiguous texture can degrade the matching
and often leads to a noisy depth map. To stabilize the result a popular approach
is to add geometric regularization terms such as derivative or curvature penal-
ties. These can be realized as low order potentials in a conditional random field
and efficient inference can be performed with move-making or message passing
algorithms. While this kind of prior can drastically improve the estimation in am-
biguous image regions, they lack any ability to recognize complex geometries and
are basically limited to encouraging piece-wise planar or smooth surfaces.

A more recent approach is to use neural networks to directly infer depth or
dense matching. An extreme case of this is monocular depth estimation where a
neural network is used to estimate depth from a single image [3]. These networks
typically require a huge amount of training data and may generalize poorly. In
addition, while they achieve meaningful results with plausible object shapes, the
resulting depth maps are often inaccurate because of the ambiguous nature of
the problem. To resolve these ambiguities, CodeSlam [1] and DeepFactors [2]
introduce an image dependent low-dimensional latent scene representation by
training a conditional variational auto-encoder. Given an image, a depth basis
is predicted and is linearly combined with the latent representation to form the
depth. Here both methods are trained supervised using ground truth depth maps,
limiting the datasets that can be used for training.

Our approach

Our goal is to use a neural network to extract a low dimensional shape pa-
rameterization from a single image that is flexible enough to allow depth fitting
using traditional stereo cues such as photo consistency. To achieve this we add
an additional input, the latent variable z, to a U-net architecture designed to com-
plement the model with the information that is not directly observed in the image.
Our latent variable model is not trained to recreate a depth map through an auto-
encoder, as in CodeSlam or DeepFactors, but rather to complement image fea-
tures with information needed to predict the depth map. A similar approach was
introduced in DeepSDF [4] to learn signed distance functions.

Fig. 1: U-Net complemented with the latent vector z

During training and inference, we treat the latent vector z as a parameter to
find during optimization instead of predicting it using an encoder. This allows us
to train the network and performed inference in essentially the same way.

Training and Inference

During training and inference we use photometric and geometric consistency losses be-
tween overlapping views to constrain the depth instead of using ground truth depth maps.
This makes the training self-supervised. For each view, we associate a latent vector z and
mean depth α, and optimize these jointly for all images in the co-visible set giving us a depth
in each view simultaneously. The losses are described below

Xi(p) = π−1(Di(p)) (1)
qij(p) = π

(
TijXi(p)

)
(2)

Lphotoi = λp
∑
j ̸=i

∥Mij ⊙ (Ij ◦ qij − Ii)∥δ (3)

Ldepthi = λd
∑
j ̸=i

∥ 1

αj
Mij ⊙ (Dj ◦ qij −Dij)∥δ, (4)

where π, π−1 are projection and un-projection operations, Tij the relative transformation,
Mij a mask that removes invalid projections and ∥ · ∥δ the huber norm. The only difference
between training and inference is that during inference the network weights are not updated.

Additionally we explicitly handle occlusion by checking the difference between the depth
Dj in view j with projected depth Dij originating form Di, using an adaptive threshold

∆ij(p) ≤ Median(∆ij)− τ · MAD(∆ij), (5)

where ∆ij = Dj −Dij. A point is classified as occluded if the condition is true.

Results

The Table below shows comparative results between DeepFactors, MegaDepth and Our
method, where it can be seen that our method yield significantly better results.

lower is better higher is better
scene Method Abs Rel Sq Rel RMSE δ < 1.1 δ < 1.25 δ < 1.252

scene0565_00 DeepFactors 0.1517 0.0693 0.3638 46.08% 76.68% 95.67%
MegaDepth 0.2749 0.2879 0.6672 36.46% 62.34% 83.20%
Ours 0.0980 0.0492 0.3036 67.31% 88.70% 97.83%

scene0606_02 DeepFactors 0.1736 0.1546 0.5799 44.96% 73.61% 91.01%
MegaDepth 0.2312 0.1998 0.5959 35.70% 63.30% 87.39%
Ours 0.1232 0.0804 0.3989 61.62% 83.73% 95.32%

scene0707_00 DeepFactors 0.1669 0.0913 0.3771 43.02% 73.62% 94.70%
MegaDepth 0.2452 0.2226 0.5443 33.36% 61.90% 86.73%
Ours 0.0883 0.0365 0.2495 71.59% 91.31% 97.94%

scene0715_00 DeepFactors 0.0959 0.0653 0.4599 64.16% 90.03% 97.74%
MegaDepth 0.2291 0.4771 0.9298 45.54% 73.12% 89.03%
Ours 0.0672 0.0471 0.3724 80.20% 94.26% 98.20%

scene0743_00 DeepFactors 0.1537 0.0549 0.23 45.61% 78.26% 95.70%
MegaDepth 0.2111 0.1236 0.3570 39.86% 70.00% 89.74%
Ours 0.0779 0.0020 0.1709 74.52% 92.8% 98.70%

One key difference between our method and CodeSlam and DeepFactors is that in our
method, the depth is non-linear in z and each component of z has a local impact on the
depth map in contrast to the aforementioned. We hypothesise that this is the reason for
the significant performance increase since it may allow larger variations in depth and a
slightly lower regularizing effect which may allow it to better adapt to new scenes while still
regularizing local structure.

Examples

Conclusion

In this work, we have presented a learning approach for monocular depth esti-
mation that takes ambiguities into account by providing a low dimensional pa-
rameterization of a family of feasible depth maps. We have shown that opti-
mizing over this representation using photo-consistency losses yields accurate
and realistic geometries. Our experimental results indicate, both qualitative and
quantitative, that our approach performs better or on par with competing state-
of-the-art methods.
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Machine learning (ML) algorithms are optimized
for the distribution represented by the training data. For outlier data, they often deliver predictions 
with equal confidence, even though these should not be trusted. In order to deploy ML-based digital 
pathology solutions in clinical practice, effective methods for detecting anomalous data are crucial to 
avoid incorrect decisions in the outlier scenario. We propose a new unsupervised learning approach 
for anomaly detection in histopathology data based on generative adversarial networks (GANs). 
Compared to the existing GAN-based methods that have been used in medical imaging, the proposed 
approach improves significantly on performance for pathology data.
Our results indicate that histopathology imagery is substantially more complex than the data targeted 
by the previous methods. This complexity requires not only a more advanced GAN architecture but 
also an appropriate anomaly metric to capture the quality of the reconstructed images.

Unsupervised anomaly detection in digital pathology​

AI MLX
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Unsupervised anomaly detection in digital pathology
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• Anomaly detection is crucial for safe deployment of digital pathology methods to clinical practice.
• Outlier data is unknown or unavailable at the training time, hence unsupervised detection methods are required.
• GANs learn the distribution of training data, so they are expected to fail to reproduce realistic images of anomalous data
• In our experiments we use healthy patches for training and tumour patches as anomaly data to be detected.

Contributions
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Introduction

Results

Fig. 1. ROC curves with the corresponding AUC achieved by the tested frameworks: 
s2-AnoGAN (our), f-AnoGAN, pg-AnoGAN and the baseline (for which only the 
number of edges is used as anomaly score). Our method had highest performance.

• s2-AnoGAN achieved the highest area under ROC curve (AUC) 
(see Fig. 1)

• As a baseline, we use the count of Canny edges within original 
images (no GANs' reconstructions involved)

• Poor f-AnoGAN performance is explained by MSE usage in 
the anomaly metric:
• Pixel-wise comparison fails as the exact locations of the 

reconstructed features varies.
• In Fig. 2, we see that our method provides best visual 

reconstruction for healthy patches. All methods struggle to 
reconstruct the tumour patches:
• Implies that more advanced GAN architecture is needed for 

digital pathology data.
• Table 1 shows AUC scores achieved by different combinations of 

the GAN + Projector and the anomaly scores

Fig. 2. Examples of test data and their 
projections by f-AnoGAN, pg-AnoGAN and 
s2-AnoGAN frameworks.

Table 1. AUC values of anomaly detection when combined with 
different anomaly metrics.

General method for unsupervised anomaly detection with GANs:​
•Projector (images -> latent representations)​
•Generator (latent representations -> images)​
•Anomaly score (comparison of image and its reconstruction)​

The generator and gradient descent based projector from StyleGAN2 [1] are 
used in our method while anomaly score is based on Canny edges [4]: the 
difference between number of edges in the original images versus in the 
reconstructed image.​
The lower the anomaly score, the better was the reconstruction which implies 
lower chance the image is an anomaly.​
Area under ROC curve (AUC) is used to measure the success of detecting 
the anomalous images.

Method

•s2-AnoGAN: unsupervised StyleGAN2 [1] based anomaly detection 
method tailored for digital pathology data
•Improved performance compared to two previous methods: f-AnoGAN [2] 
and pg-AnoGAN [3].​
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We extend the recent results of (Arora et al. 2019) by spectral analysis of the representations corres-
ponding to the kernel and neural embeddings. They showed that in a simple single-layer network, the 
alignment of the labels to the eigenvectors of the corresponding Gram matrix determines both the 
convergence of the optimization during training as well as the generalization properties. We gene-
ralize their result to the kernel and neural representations and show these extensions improve both 
optimization and generalization of the basic setup studied in (Arora et al. 2019). In particular, we first 
extend the setup with the Gaussian kernel and the approximations by random Fourier features as well 
as with the embeddings produced by two-layer networks trained on different tasks. We then study the 
use of more sophisticated kernels and embeddings, those designed optimally for deep neural networks 
and those developed for the classification task of interest given the data and the training labels, inde-
pendent of any specific classification model.

Do kernel and neural embeddings improve optimization and generalization?
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Description
The authors of [1] has showed that in a simple single-layer network, the alignment of the labels to the eigenvectors of the corresponding Gram matrix
determines both the convergence of the optimization during training as well as the generalization properties. We thought about generalizing their results
to other representations of the data. Specifically, we worked with representations induced by different Kernels as well as Neural Networks.
In particular, we extend the setup in [1] with Kernels and approximations of Kernel embeddings as well as with the embeddings produced by two-layer
neural networks.

Background & Motivation

Figure 1: Rethinking Generalization Experi-
ment. Source: ICML slides for [1]
Rethinking Generalization Experiment [3]:
Gradient Descent for a neural network reaches
nearly 0 training loss for both correct and ran-
dom labels. BUT we see better generalization
and faster convergence for correct labels. So we
have two fundamental questions to answer:
Optimization. Why do true labels give faster
convergence rate than random labels for gradient
descent?

Generalization. What property of properly la-
beled data controls generalization?
In [1], the authors consider a specific simple two-
layer network model:

fW,a(x) =
1√
m

m∑
r=1

ar max(0, wT
r xi), (1)

with x ∈ Rd, w1, ..., wm ∈ Rd×m and (a1, ...,
am)T ∈ Rm (where m specifies the number of
neurons in the hidden layer, i.e., its width). This
network is trained on dataset of data points {xi}
and their targets {yi}.
They show that both training and generalization
are better if the label vector y aligns with the
eigenvectors corresponding to the top eigenvalues
of H∞ (Gram Matrix) where

H∞
i,j := EW∼N (0,I)

[
xT
i xj1[w

Txi ≥ 0,wTxj ≥ 0]
]

(2)
and

H∞ =
∑
i

λiviv
T
i (3)

is the orthonormal decomposition of H∞.

Some of the Results
Below we can see the experimental train and test
errors at the different steps of Gradient Descent
as well as eigenvector projections for the CIFAR-
10 dataset for various Kernels:
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Our Method
The simple two-layer network can be extended
with adding different types of embeddings φ at
the input layer corresponding to a kernel K:

fW,a(x) =
1√
m

m∑
r=1

ar max(0,wT
r φ(xi)). (4)

Then the Gram Matrix can be defined in the
same way as before. Let its eigenvalues be or-
dered as λ0(K) ≥ λ1(K) ≥ · · · ≥ λn−1(K) and let
v0(K), · · · ,vn−1(K) be the corresponding eigen-
vectors. We can also view the representations
generated by successive neural network layers as
a type of embedding which helps us to understand
what happens in deeper networks.

A kernel K such that the corresponding eigenvec-
tors align well with the labels would be expected
to perform well both for training optimization as
well as generalization.
For our kernelized network the optimization and
generalization are respectively controlled by:

√∑
i

(1− ηλi(K))2k(v(K)Ti y)
2 (5)

and

yT (H(K)∞)−1y (6)

Our Kernels
We have used the following kernels in our experiments:
1. Gaussian Kernel: The Gaussian kernel is given by K(xi, xj) := exp

(
−γ‖xi − xj‖2

)
.

2. Neural Kernel: By adding another layer to the network and training it to convergence we can
then use the weights of the first layer as a kernel embedding for training a new network.
2. Arc-cosine Kernel: This kernel mimics the computations in a neural network within an infinite
dimensional feature space.
3. Optimized Kernel: We use the method proposed in [2] that suggests an algorithm to learn
a new kernel from a group of kernels based on a similarity measure between the kernels, namely
centered alignment. The learned kernel is expected to align well with the labels.

How To Find Kernel Embeddings?
We can use existing methods for approximation of kernel embeddings. Specifically, we used random
Fourier features (RFF) for Gaussian Kernel, and Nyström method for other Kernels.
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Many real-world recognition problems present a highly imbalanced or long-tailed label distribution. 
This setting makes representation learning more challenging and tends to bias classifiers towards 
head classes, resulting in limited generalization for tail classes. By simultaneously addressing these 
issues, ensemble learning has shown promising results for long-tailed classification, exhibiting a good 
trade-off between head and tail performance. The aim of this research is to further study methods 
for learning and integration of multiple specialized models, called experts, to solve long-tailed visual 
problems. In addition, we investigate the calibration properties of the proposed expert-based model 
under long-tailed data regimes.

Deep Expert Learning for Long-Tailed Recognition
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Data re-sampling Under-fitting to the head
Over-fitting to the tail

Loss re-weighting Sub-optimal for feature learning

(Class-dependent) margins

Deep Expert Learning for Long-Tailed Recognition
Emanuel Sanchez Aimar, Linköping University

Computer Vision Laboratory, ISY
Supervisors: Michael Felsberg, Marco Kuhlmann

Many real-world recognition problems present a highly imbalanced or long-tailed label distribution. This setting makes representation
learning more challenging and tends to bias classifiers towards head classes, resulting in limited generalization for tail classes [1]. By
simultaneously addressing these issues, ensemble learning has shown promising results for long-tailed classification, exhibiting a good
trade-off between head and tail performance [2, 3]. The aim of this research is to further study methods for learning and integration of
multiple specialized models, called experts, to solve long-tailed visual problems. In addition, we investigate the calibration properties of
the proposed expert-based model under long-tailed data regimes.

Classical approaches & drawbacks
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Motivation & Research goals

Framework

How to achieve diversity & specialization?
E.g., by data division

How to combine experts effectively?
E.g., by averaging

University LOGO

of ensemble learning

• Stage 1: train experts independently, by simulating
different class distributions

• Stage 2: combine experts in an ensemble (logit space)

Illustration courtesy of [2].

Illustration courtesy of [4].

1. How to improve stage 1? We propose a new
parameterization for the expert losses inspired on [3]

2. A more flexible fusion strategy for stage 2? We
investigate a learnable gating model

3. Interesting property to look into: model calibration
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One reason for the spectacular success of machine learning models can be the appearance of large 
datasets. Large datasets cannot be processed on a single machine due to resource limitations or slow 
training. Moreover, some datasets are private, and data sharing is prohibited. Distributed optimization 
methods can help use much more sensitive data points to train a machine learning model quickly 
because the dataset is stored on different nodes, and each node does the computations associated with 
a collection of data points available to it.

Machine Learning over Networks: Optimization point of view
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Machine Learning over Networks:
From an optimization point of view

Firooz Shahriari-mehr, PhD student at Chalmers University of Technology
Deptartment of Computer Science and Engineering

Supervisors: Ashkan Panahi

Motivation

One reason for the spectacular success of machine learning models can be the appearance of large datasets. Large datasets cannot
be processed on a single machine due to resource limitations or slow training. Moreover, some datasets are private, and data sharing
is prohibited. Distributed optimization methods can help us to use much more sensitive data points to train a machine learning
model quickly because the dataset is stored on different nodes, i.e., computational machines, each of them does the computations
associated with a collection of data points available to it. In this poster, I will present a novel distributed optimization algorithm for
the convex finite-sum minimization problem with explicit convex constraints over strongly-connected directed graphs.

Methods

Finite-sum minimization problem with explicit constraints:

min
x∈Rm

1

M

M∑
v=1

fv(x) subject to x ∈
M⋂
v=1

Sv

The setup that we have considered to solve this problem is a set of M
nodes, each of them has access to its own local objective function and
constraint set. The nodes communicate over a decentralized network
represented by a directed graph.

f1, S1

f2, S2

f3, S3

fv, Sv
fM , SM

Goal of the network: All nodes converge to a consensus solution which
satisfies the following optimality condition:

0 ∈
M∑
v=1

(∂ISv (x∗) +∇fv(x∗))

Previous proposed algorithms[1] have assumed undirected graph, diminish-
ing step-size, or identical constraints assumption for convergence analysis.

Double Averaging and Gradient Projection[2]: Each node v does the
following updates in each iteration:

zv = xv
k −

∑
u∈N in

v ∪{v}
wvuxu

k − µ (∇fv(xv
k)− gvk)

xv
k+1 = PSv (zv)

gvk+1 = gvk + ρ

[
∇fv(xv

k)− gvk +
1

µ

(
zv − xv

k+1

)]
+ α (hv

k − gvk)

hv
k+1 = hv

k −
∑

u∈N in
v ∪{v}

qvu(hu
k − guk)

General concepts used in DAGP:
• Weighted averaging: each node receives some information from its

neighbors and calculates a weighted average using gossip matrices.
• Projection: each node does a projection onto the local constraint set.
• Constrained gradient tracking: similar to the variance reduction tech-

niques in stochastic optimization, the vectors called gv store the past
values of averaged (sub)gradients and feasible directions.

• Distributed null projection: to reach optimality,
∑

gv = 0 (null condi-
tion), which is achievable in a distributed way. To this end, we introduce
the ”distributed projection” of gvs, called hv, onto the space

∑
hv = 0.

Selected Results

Theorem 1 (Consensus and Optimal Solution). If the iterates of
DAGP algorithm converge, any stopping point is an optimal and
consensus solution, i.e., xv = x∗, ∀v ∈ V, and x∗ satisfies the
sufficient optimality conditions.

Theorem 2 (Convergence Rates). DAGP recovers the standard
rates for convex and smooth objectives under some common as-
sumptions without strong-convexity assumption. We showed fea-
sibility and optimality gaps decay respectively with the rates of
1/K and 1

/√
K , where K is the total number of iterations.

DAGP has superior empirical results in comparison to the DDPS[1] algo-
rithm in the following constrained problem:

fv(x) = log
(

cosh(aTv x − bv)
)
, v = 1, . . . , 20

Sv = {x ∈ R10 | cTv x − dv ≤ 0}. v = 1, . . . , 20
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Moreover, DAGP shows comparable performance with the state-of-the-
art push-pull[3] algorithm in the logistic regression problem for two digits
of the MNIST dataset, which is an unconstrained problem.
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Ensemble analysis is a challenging problem, appearing in many scientific applications. This work 
introduces a pipeline to explore ensembles by combining automatic and interactive visual analysis, 
focusing on molecular electronic transition ensembles within the chemistry domain. An electronic 
transition describes the change in charge distribution between two molecular states. The goal of the 
pipeline is to characterize and compare the transitions, and how they correlate to physical properties.
Each ensemble member is described with a quantitative feature vector, making it possible to utili-
ze hierarchical clustering. A visual summarization for each cluster as well as the whole ensemble is 
proposed, building on the feature vector representation. Other interactive visual components are used, 
supporting both exploration of clusters and outlier detection, as well as investigation of correlation.
The usefulness of the pipeline is shown by applying it to data from theoretical chemistry.

Exploring Transition Ensembles using Hierarchical Clustering and  
Visual Representations

AI MLX
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Each ensemble member is quantitatively described with a feature vector containing the charge in each 
subgroup of the molecule (building on a charge transfer matrix from previous work [1]). This quantitative 
description gives the possibility to utilize hierarchical clustering and statistical summarization methods. A 
measure of locality value (ML) is derived, capturing how much charge is transferred in the transition. 
The result is used in the visual representations. An automated dendrogram, augmented with cluster 
representations on different level of details gives an overview of the ensemble. Other interactive visual 
components are used, supporting both exploration of clusters and outlier detection, as well as 
investigation of correlation. Spatial representations of selected transitions links our abstract 
visualizations back to a view more familiar to the chemists.

Exploring Transition Ensembles using
Hierarchical Clustering and Visual Representations 

Signe Sidwall Thygesen, Linköping University
Scientific Visualization, Media and Information Technology

Ensemble analysis is a challenging problem, appearing in many scientific applications. This work introduces a pipeline to explore 
ensembles by combining automatic and interactive visual analysis. It is applied it to molecular transition ensembles from theoretical 
chemistry, addressing the need to better explore such data. An electronic transition describes the change in charge distribution between 
two molecular states. The chemists are interested in finding out how much charge is transferred between different subgroups of the 
molecule. The purpose of the pipeline to characterize and compare transitions, and how they correlate to physical properties.

References
1. Bin Masood et al, Visual Analysis of Electronic Densities and 

Transitions in Molecules, Computer Graphics Forum, 2021.

Background & Motivation

Contributions

University LOGO

Angle State ML Cluster ID

The spatial representations for 
a selected transition helps the 
chemists to understand the data.

A parallel coordinates plot shows correlation
between parameters, and makes it possible to 
filter and inspect ensemble members.

o A novel feature vector to 
describe electronic transitions 
and a quantitative measure of 
locality for distinguishing 
between transitions of different 
nature

o A visual pipeline for ensemble 
analysis combining automatic 
and explorative methods

o A level of detail 
representation summarizing 
and conveying the mean 
behavior of a cluster

o Introduction of augmented 
dendrograms to provide a 
hierarchical visual 
representation of ensemble 
data

Pipeline

Example
To illustrate the pipeline, it is applied to an electronic transition ensemble for a molecule consisting of two subgroups (G1 and G2).   

The automatically 
generated augmented 
dendrogram gives an 
overview of the 
clusters….

…which can be used 
to select a good level 
of detail in the 
interactive 
exploration.

A linked
scatter plot
provides an 
additional
overview and 
the possibility
to select
outliers. 



Stempfle, Lena
Chalmers

90 APage

In Alzheimer’s disease, amyloid-β (Aβ) peptides aggregate in the brain forming CSF amyloid levels - a 
key pathological hallmark of the disease. However, CSF amyloid levels may also be present in cogni-
tively unimpaired elderly individuals. We aim to explain the variance in disease progression among 
patients with Aβ-pathology. We perform prediction of a) the change of MMSE score using regression 
models for 2 and 4 years after follow-up and b) the change in diagnostic using classification model for 
2 years after follow-up. 
We show in our analysis that CSF levels of Aβ are not strong predictors of the rate of cognitive decline 
in Aβ-positive subjects when adjusting for other variables.

Predicting progression & cognitive decline inamyloid-positive patients with 
Alzheimer’s disease

AI MLX
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Predicting progression & cognitive decline in amyloid-positive patients with 
Alzheimer's disease

Hákon Valur Dansson1, Lena Stempfle1*, Hildur Egilsdóttir1, Alexander Schliep1, Erik Portelius2,3, Kaj Blennow2,3, 
Henrik Zetterberg2,3,4,5, and Fredrik D. Johansson1 

1CHALMERS, 2GU, 3SAHLGRENSKA UNIVERSITY HOSPITAL, 4UCL NEURODEGENERATIVE DISEASES, 5UCL DEMENTIA RESEARCH

Summary
In Alzheimer’s disease, amyloid-β (Aβ) peptides aggregate in the brain
forming CSF amyloid levels - a key pathological hallmark of the disease.
However, CSF amyloid levels may also be present in cognitively unimpaired
elderly individuals. We aim to explain the variance in disease progression
among patients with Aβ-pathology. We perform prediction of a) the change of
MMSE score using regression models for 2 and 4 year after follow-up and b)
the change in diagnostic using classification model for 2 year after follow-up.
We show in our analysis that CSF levels of Aβ are not strong predictors of the
rate of cognitive decline in Aβ-positive subjects when adjusting for other
variables.

References

Determination of amyloid-positive status 

Results
We perform a set of experiments using ADNI data to predict the change in
MMSE after 2 and 4 year of follow-up and the change in diagnosis after 2
years.
The best predictive model of change in cognitive test scores for Aβ-positive
subjects at the 2-year follow-up achieved an R2 score of 0.388 while the best
model predicting adverse changes in diagnosis achieved a weighted F1 score
of 0.791. When predicting cognitive score change 4 years after baseline, the
best model achieved an R2 score of 0.325 and it was found that fitting models
to the extended cohort improved performance. Moreover, using all clinical
variables outperformed the best model based only on a suite of cognitive test
scores which achieved an R2 score of 0.228.

Acknowledgements
Data used in preparation of this article were obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI)
database (adni.loni.usc.edu).

Even in individuals with Aβ pathology, there is substantial variation in
symptoms, such as cognitive function, for this reason our work focuses on
predicting progression in individuals with elevated Aβ CSF levels. Aβ
pathology status was determined based on the Aβ42/Aβ40 ratio.

Our results illustrate high correlation between important predictors which
offers future investigation to eventually handle the high missingness in the
data. Baseline assessments of cognitive function accounts for the majority of
variance explained in the prediction of 2-year decline but is insufficient for
achieving optimal results in longer-term predictions.
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Derivation and evaluation cohorts

Task B: Predicting change in diagnosis for 2 years (B1) 
follow-up

Figure 1: The full cohort was split into three
groups: those who had a baseline Aβ ratio lower
than 0.13 (Aβ-positive), those who had a higher
ratio (Aβ-negative), and those with unknown
status.

Potential predictors 
Predictive models were built on two different sets of features. The first set of
features (all features) was preselected following [48] and expanded to include
key features from the ADNI TadPole competition [49] in addition to a few
features that were available for over 90% of the ADNI cohort. This resulted in
a set of 37 features including biomarkers tau, ptau and Aβ42 in CSF, and 15
different cognitive tests among others. The second feature set (cognitive tests
only) consists only of the 15 cognitive tests.
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Our experiments are performed on three different cohorts. To compensate for
the small number of 1) only Aβ-positive subjects (Aβ only), were compared
to training cohorts including 2) (All Subjects) combined Aβ-positive and Aβ-
negative subjects and those without Aβ measurements into one derivation set
and 3) (All Subjects, Weighted), with weighted samples with respect to the All
Subjects cohort to mimic a larger sample of Aβ-positive subjects.
We let the latent state 𝐶𝐶 ∈ {0,1} of a Gaussian mixture model (GMM), fit to
the Aβ-ratios of the All Subjects cohort, represent Aβ-positivity. The weight
𝑤𝑤! was computed as:

Figure 2: Each subject i was assigned a weight
wi > 0 based on the probability that their individual
Aβ ratio ri would be observed for an average
hypothetical Aβ-positive subject

Changes in dementia diagnoses (CN/MCI/AD) were determined by
comparing the disease status, indicating whether or not a subject’s diagnosis
had worsened in 2 year expressed by a binary variable.
For the classification task, a logistic regression model and the same tree-based
gradient-boosting approach as for Task A was used and evaluated by cross-
validated weighted F1 score.

Prediction models and learning objectives 

Task A: Predicting change in MMSE score for 2 (A1) and 
4 (A2) years of follow-up 

Change in MMSE score assessed as cognitive function [32], relative to
baseline and 2 years. MMSE takes values on a scale from 0 to 30 where a
lower score represents worse cognitive function [45].
We considered the performance of linear regression and gradient boosting
models that predict the change in MMSE scores measured using the
average cross-validated R2 score and standard deviation.

We studied the progression of Aβ-positive subjects with respect to two 
principal outcomes: 

Table 1: Performance of the linear and gradient boosting regressions, predicting change in MMSE two and
four years after baseline for three different cohort selections. We compare models trained on features a) the all
features set from baseline and b) from baseline cognitive scores only.

[32] Galea, M., Woodward, M.: Mini-mental state examination (mmse).Australian Journal of Physiotherapy51(3), 198
(2005)
[45] Dick, J., Guiloff, R., Stewart, A., Blackstock, J., Bielawska, C., Paul,E., Marsden, C.: Mini-mental state
examination in neurologicalpatients. Journal of Neurology, Neurosurgery & Psychiatry47(5),496–499 (1984)
[48] Nguyen, M., He, T., An, L., Alexander, D.C., Feng, J., Yeo, B.T.T.:Predicting alzheimer’s disease progression using
deep recurrent neuralnetworks. NeuroImage222, 117203 (2020).doi:10.1016/j.neuroimage.2020.11720349.
[49] Marinescu, R.V., Oxtoby, N.P., Young, A.L., Bron, E.E., Toga, A.W.,Weiner, M.W., Barkhof, F., Fox, N.C., Eshaghi,
A., Toni, T., et al.:The alzheimer’s disease prediction of longitudinal evolution (tadpole)challenge: Results after 1 year
follow-up. arXiv preprintarXiv:2002.03419 (2020)

𝑤𝑤! = #𝑝𝑝 𝑅𝑅 = 𝑟𝑟! 𝐶𝐶 = 1)/ #𝑝𝑝(R= 𝑟𝑟!) Figure 3: Aβ-positive subjects declined faster on average than those without Aβ pathology, but the specific
level of CSF Aβ was not predictive of progression rate.

Conclusion

R2 (SD) 2-year follow-up 4-year follow-up
All features
Linear regression, Aβ Only 0.372 (0.081) 0.205 (0.227)
Linear regression, All Subjects 0.354 (0.083) 0.325 (0.134)
Linear regression, All Subjects, Weighted 0.388 (0.073) 0.304 (0.152)
Gradient boosting, Aβ Only 0.287 (0.124) 0.156 (0.244)
Gradient boosting, All Subjects 0.356 (0.108) 0.252 (0.191)
Gradient boosting, All Subjects, Weighted 0.338 (0.950) 0.263 (0.192)
Cognitive tests only
Linear regression, Aβ Only 0.343 (0.087) 0.178 (0.203)
Linear regression, All Subjects 0.333 (0.081) 0.228 (0.143)
Linear regression, All Subjects, Weighted 0.350 (0.079) 0.225 (0.160)
Gradient boosting, Aβ Only 0.272 (0.133) -0.050 (0.358)
Gradient boosting, All Subjects 0.323 (0.118) 0.149 (0.224)
Gradient boosting, All Subjects, Weighted 0.293 (0.114) 0.118 (0.227)
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Our research objective is to improve the observability and speed up the fault finding process in the 5G 
Radio Access Network (RAN). We develop and utilize many different machine learning methods to 
analyze RAN system logs. From the logs we can learn and distinguish between the normal and abnor-
mal behavior and aid the developers in locating the problems.

Anomaly detection and root-cause analytics in 5G Radio Access Network

AI MLX
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PROBLEM
It will be very challenging to make the 5G Radio 
Access Network (RAN) reliable due to its complexity:
• Increased network dynamics with different services
• Distributed system of radio units at antenna sites 

and applications in edge data center cites
• Separation of hardware and software from many 

vendors with individual configurations
• Virtualized RAN applications share resources with 

others on multi-purpose hardware
• Analysis of huge metrics from multiple sources
• Difficult to know if the system behaves normally

PROOF OF CONCEPT

5G RAN

Department of Computing Science, SE-901 87 Umeå, Sweden
Email: {sundqtob, monowar, elmroth}@cs.umu.se

We use AI to find faults quicker and more easily
Tobias Sundqvist, Monowar Bhuyan, Erik Elmroth, and Johan Forsman

Anomaly detection and root-cause
analytics in 5G Radio Access Network

Scan me

And learn more 
about my research
http://www.qvistigt.com/
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AdaBoost ensemble of LSTM

Statistical and clustering

Detect changes in procedures

Detect abnormal delays

Continuous Integration

Root-cause detection
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Applications

Kernel

CPU Memory Devices

Train / test

CallGraph
Learns what kind of 
function and kernel calls 
that occur between 
debug printouts in 
system log.

MultiSpace

To fully understand the root cause of 
all software bugs in RAN we need to 
monitor both the function and kernel 
calls.

Creates a call 
and mean time 
vector for each 
function.

• Find deviation in 
function call pattern.

• Find largest deviation in 
time for each function.

The methods provide a detailed 
view of where abnormal delays 
and large variations occur.

LSTM models learn the sequential order 
of procedures in the system log. 
Anomalies are detected as the order of 
events changes or abnormal events 
occur.

Methods are detecting 
anomalies in customers 
data. Speeds up fault 
localization process.

CloudRAN
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With the ever-increasing amounts of data generated from new sources and scientific methods, e.g. 
high throughput genome sequencing methods in bioinformatics, powerful tools for exploratory data 
analysis are required. One such tool is clustering, i.e. grouping together coherent observations in data, 
which is important for categorising vast amounts of observations into a more manageable format for 
further analysis. However, this task is subject to new challenges as tensor data, i.e. multidimensional 
data, has become a frequent occurrence in many applications. For tensor data, a clustering approach 
called co-clustering has recently attracted research attention. Co-clustering means that the clustering 
is performed on all the tensor dimensions simultaneously, which enables the detection of joint data 
expressions that only occur under special circumstances. Here a method for co-clustering of tensor 
data using a sparse CP decomposition  is proposed.

Co-clustering of Tensor Data Using Sparse Tensor Factorisation

AI MLX
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Motivation & Research Goals

With the ever-increasing amounts of data generated from new sources and scientific methods, e.g. high throughput genome sequencing
methods in bioinformatics, powerful tools for exploratory data analysis are required. One such tool is clustering, i.e. grouping together
coherent observations in data, which is important for categorising vast amounts of observations into a more manageable format for
further analysis. However, this task is subject to new challenges as tensor data, i.e. multidimensional data, has become a frequent
occurrence in many applications. For tensor data, a clustering approach called co-clustering has recently attracted research attention.
Co-clustering means that the clustering is performed on all the tensor dimensions simultaneously, which enables the detection of joint
data expressions that only occur under special circumstances. Here a method for co-clustering of tensor data using a sparse CP
decomposition is proposed.

Methods

The CP decomposition splits a tensor into a finite sum of rank one ten-
sors, i.e. tensors that can be written as an outer product of N vectors
Finding the CP decomposition of a three-way tensor X ∈ RI×J×K may
be formalised as

min
X̄

∥X− X̂∥ where X̂ =
R∑

r=1

λr ar ◦ br ◦ cr ,

where R is a positive integer, λr is a scaling factor, and ar ∈ RI , br ∈ RJ

and cr ∈ RK for r = 1, 2 . . . R, and are all normalised to length one

X ≈

c1

a1

b1

+

c2

a2

b2

+ · · ·+

cR

aR

bR

The sparse CP decomposition from [1] regularises the factors by a l1
norm penalty and calculates them in a sequential manner.

The mean square residue (MSR) is used to measure the coherence
of a co-cluster D, and is defined as [2]

MSR(D) =
1

PQR

∑
p∈P,q∈Q,r∈R

(dpqr−dpQR−dPqR−dPQr+2dPQR)2,

where dpQR, dPqR and dPQr denotes the mean of the pth row, qth
column and kth tube, respectively, and dPQR denotes the mean of D.

Perform a sparse CP decomposi-
tion X̂ =

∑R
r=1 λr ar ◦ br ◦ cr

Perform hierarchical clus-
tering on ar , br, cr.

Assign a co-cluster to each ele-
ment x̂ijk depending on the clus-
ter memberships of ai, bj and ck

Filter out clusters that
have MSR < δMSR

f

Merge cluster if the merged
clusters have MSR < δMSR

m

Selected Results

Different kinds of co-clusters were simulated. Left: Eight constant co-
clusters were simulated. Right: The co-clusters found, corresponding to
the true co-clusters.
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The method was applied on a three-way genomic data set, containing
dESeq2 normalised estimates of the fold changes, for different genes,
drugs and cell lines.

The method has the potential to detect several types of additive
coherent co-clusters. Applying it to real genomic data revealed
several interesting co-clusters, which provides the biological re-
searches with interesting gene-drug co-clusters to investigate fur-
ther. Thus the method could be a useful tool for detecting coher-
ent co-clusters in tensor data, and for exploratory data analysis.
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The problem of model selection in machine learning can be seen as a search problem, where we have a 
space of models and we search for a model that best represents the data but also satisfies other criteria 
such as privacy.
The nature of dynamic databases that change frequently leads to an interaction between the space of 
the database and the space of models.
Previous studies show that models that appear frequently are better for integral privacy. In order to 
build privacy-aware machine and statistical learning, we plan to study the relationship between the 
space of data (possible databases, sets of databases) and the space of models. As a first step of this 
research direction, the construction of the two  metric spaces and their relative distances is proposed.

Developing privacy-aware ML based on ML model spaces
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Abstract

The problem of model selection in machine learning can be seen as a search problem, where we have a space of models and
we search for a model that best represents the data but also satisfies other criteria such as privacy. The nature of dynamic
databases that change frequently leads to an interaction between the space of the database and the space of models. Previous
studies show that models that appear frequently are better for integral privacy. In order to build privacy-aware machine and
statistical learning, we plan to study the relationship between the space of data (possible databases, sets of databases) and the
space of models. As a first step of this research direction, the construction of the two metric spaces and their relative distances
is proposed.

Motivation

Several privacy models have been proposed in the literature, some of
them are data driven models such as Differential privacy and Inte-
gral privacy [1]. Previous results have shown that when databases are
sample, some machine learning models appear more frequently than
others, these models are called recurrent, which are found to better
from a privacy perspective specially for Integral privacy.
Since data are naturally dynamic, there is a need to derive machine
learning models that are persistent in time but also satisfy other cri-
teria such as privacy. In order to achieve this, it is necessary to study
how the space of data interacts with the space of models.
More particularly, that any decision on the space of models has to
take into account relationships between the space of data that gener-
ate these models.We consider that this perspective is of great interest
in the following areas.

• In model selection for statistical and machine learning. In this area

the goal is to select models that better generalize data and avoid
overfitting. This also relates to the effect of outliers and influential
points in learning. It is important to understand generalization and
overfitting in terms of the relationship between the space of models
and the space of data.

• In privacy preserving data mining and machine learning.

The need to study the relationship between the two spaces was first
proposed in [2], in the context of integral privacy . In short, a model is
integrally private if it can be generated by a large number of databases
which are diverse enough. This is to avoid some type of privacy attacks
on machine learning models.
Therefore, we want to investigate models with good accuracy, that
does not have overfitting, that are not vulnerable to membership at-
tacks and that are near to models with similar generators.

Aim & Objectives

The research focus on the study of spaces of data and models, for-
malizing these relationships and developing methodologies to select
privacy-aware machine learning models.This research will require at
least, the establishment of:

• Mathematical models including definition of metric spaces
on both data and model spaces.

• Computational approaches to numerically compute distances
between objects in these two spaces.

• Methodologies to select an appropriate model taking into
account the relationships between spaces.

Selected Results

[3] In this paper we have proposed the use of Markov chains and transi-
tion matrices to model transitions between databases, and used them
to define a probabilistic metric space for models. Our modelization
uses two definitions to construct the probabilistic metric space. The
first definition considers the distance between two databases in terms
of the probability of being transformed into the second one (VD-PMS).
The second one considers the distance between two databases in terms
of their evolution(DD-PMS).
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The PhD project aims to identify a data-driven control architecture to meet the growing challenges 
of the electrical power system. In particular, the focus is on optimizing the control of multiple power 
electronic converters. The main objectives are to achieve greater utilization of the power system capa-
city, higher power system stability and improved power quality.

Learning to Control Multiple Power Electronic Converters
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The PhD project aims to identify a data-driven control architecture to meet the growing challenges of the electrical power system. In 
particular, the focus is on optimizing the control of multiple power electronic converters. The main objectives are to achieve greater 
utilization of the power system capacity, higher power system stability and improved power quality. 

Motivation & Background
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Abstract

Considerations for future work include:
• Continual learning
• Curriculum learning
• Scalability
• Improved safety
• Planning
• Benchmarking against state-of-the-art
• Hardware-in-the-loop implementation and assessment

Methods & Preliminary Results
• The electrical power system is evolving and more coordinated, 

faster and accurate control alternatives are foreseen to be 
needed

Future Work

• Control challenges include:
• Non-convex and sequential-decision-making problem
• Model and measurement uncertainty
• Partial observability
• Variations in topology and dynamics
• Safety and reliability crucial

• We introduced a world model based reinforcement learning 
architecture (WMAP) in [1]. Contributions include:
• Adapting the world model architecture from [3] to the power

system domain
• Increasing safety by adding a shield to make the architecture

ask for guidance whenever uncertainty above threshold
• Performing a case study on the IEEE 14-bus system and

benchmarking the performance on a test scenario.

controllable device

controllable device

Management of 
power system 

becoming more 
demanding

Traditional 
human-in-the-
loop control may 
soon be 
inadequate

• Using heuristics and engineering, a coordinated control of power
electronic converters can increase transfer capability [2]

• Reinforcement learning can potentially self-learn such a control
scheme

agent
observations

rewards

Model based

Reinforcement 
learning

Model free

Learn model Model is 
provided

World 
model 

including 
controller

Power 
system 

environment
Shield

High uncertainty 
indicating poor pre-training

for this situation.
Maybe ask
for advice?

Help!

More results and 
benchmark variants 
in the paper.

Results showed improved
performance compared to
model free reinforcement
learning algorithm, fixed
control setpoints and non-
frequent expert setpoint
updates.
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Some explainable reinforcement learning (XRL) methods are applied at the input side/end of the mo-
del to generate explanation(s) analyzing the contribution of the input features to the agent’s decision. 
While some other methods like reward decomposition are applied to the output end of the model to 
explain the contribution of the output’s components to the final reward value.
In this work we focus on a correlation between input and output explanations. This results in a finer 
granularity of explanation and also reveals reward prioritization effect which allows for a better 
adjustment for the RL agent. Additionally, we present a focus value measuring the fulfilment of the 
explanation to the desired properties.

BEERL: Both End Explanations for Reinforcement Learning
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Following the success of supervised learning, semi-supervised learning (SSL) is now becoming increa-
singly popular. SSL is the family of methods which in addition to a labeled training set, also use a large 
set of unlabeled data for training the model. Most of the recent successful SSL methods are based on 
pseudo-labeling approaches: letting confident model predictions act as training labels. While these 
methods have shown impressive results on many benchmark datasets, a drawback of this approach 
is that not all unlabeled data are used during training. We propose a method: DoubleMatch, which 
combines the pseudo-labeling approach with a self-supervised loss, enabling the model to utilize all 
unlabeled data through all stages of the training process. We show that this method achieves state of 
the art accuracies on multiple benchmark datasets while also reducing training times compared to 
previous SSL methods.

DoubleMatch: improving Semi-Supervised Learning with 
a Self-Supervised Loss

AI MLX
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Motivation & Research Goals

Supervised learning has gained a lot of attention in recent years because of remarkable achievements in fields such as image clas-
sification, object detection and natural language processing. The great results within supervised learning are typically fueled by
huge amounts of labeled data. In practical applications, however, labeled data might be scarce, expensive, or require expert domain
knowledge to attain. In contrast, unlabeled data, is often much easier to acquire, through e.g. web scraping or unsupervised sensor
recordings. Semi-supervised learning, using both labeled and unlabeled data for fitting a model, has recently shown impressive
results with methods such as FixMatch [1] and UDA [2]. These methods however suffer from not leveraging all unlabeled data
during training. We propose a method, DoubleMatch, that takes inspiration from work in self-supervised learning to better utilize all
unlabeled data. With this method we hope to 1) reduce converge rates of previous methods 2) increase test accuracy on benchmark
datasets.

Methods

Unlabeled
image

Weak
augmentation

Strong
augmentation

Backbone, f

Backbone, f

Prediction head, g

Projection head, h

Prediction head, g

Thresholding +
pseudo labeling

Cosine loss

CE loss

+

Unlabeled loss

We build upon the FixMatch framework for semi-supervised learning. Fix-
Match uses the traditional cross-entropy loss for labeled data. For unla-
beled data it utilizes both weak, α, and strong, β, data augmentations. A
confident prediction on the weakly augmented sample is used as a pseudo
label for a strong augmentation of that same sample:

lp =
1

µB

µB∑
i=1

1{max(p(y|α(xi)) > τ}H(argmax (p(y|α(xi))), p(y|β(xi)))

where τ is the confidence threshold, µB is the unlabeled batch size, and
xi are the unlabeled samples.
As we can see, only data with confident predictions on weakly augmented
data are used to calculate this loss. We propose adding a feature loss on
the output from the penultimate layer of the classification network using
the cosine similarity:

ls = − 1

µB

µB∑
i=1

h(vi)zi
|h(vi)||zi|

= − 1

µB

µB∑
i=1

cos(h(vi), zi).

Here, zi is the feature vector for weakly augmented sample i and vi
is the feature vector for strongly augmented sample i. h is a trainable
linear transformation to allow for different feature representations between
weakly and strongly augmented data.

Selected Results

We evaluate our model on benchmark datasets for image classification
using different sizes for the labeled training set. We achieve SOTA error
rates despite running our method for fewer training iterations than the
methods we use as comparisons.

CIFAR10

Method 40 labels 250 labels 4000 labels

Π-model - 54.26±3.97 14.01±0.38

Pseudo-Labeling - 49.78±0.43 16.09±0.28

Mean Teacher - 32.32±2.30 9.19±0.19

MixMatch 47.54±11.50 11.05±0.86 6.42±0.10

UDA 29.05±5.93 8.82±1.08 4.88±0.18

ReMixMatch 19.10±9.64 5.44±0.05 4.72±0.13

FixMatch (CTA) 11.39±3.35 5.07±0.33 4.31±0.15

DoubleMatch (ours) 13.59±5.60 5.56±0.42 4.65±0.17

CIFAR100 STL10

Method 400 labels 2500 labels 10000 labels 1000 labels

Π-model - 57.25±0.48 37.88±0.11 26.23±0.82

Pseudo-Labeling - 57.38±0.46 36.21±0.19 27.99±0.83

Mean Teacher - 53.91±0.57 35.83±0.24 21.43±2.39

MixMatch 67.61±1.32 39.94±0.37 28.31±0.33 10.41±0.61

UDA 59.28±0.88 33.13±0.22 24.50±0.25 7.66±0.56

ReMixMatch 44.28±2.06 27.43±0.31 23.03±0.56 5.23±0.45

FixMatch (CTA) 49.95±3.01 28.64±0.24 23.18±0.11 5.17±0.63

DoubleMatch (ours) 41.83±1.22 27.07±0.26 21.22±0.17 4.35±0.20

To illustrate our increase in training speed the below figure shows test
accuracy as a function of training iteration for DoubleMatch and FixMatch
during a training run on Cifar100 with 10000 labeled data:
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Our method performs well across many datasets. It does however seem
to perform worse in the very low-label regime (e.g. Cifar10 with 40 la-
bels). Our hypothesis is that high quality pseudo-labels is more important
than self-supervision for the low-label datasets. Another weakness of our
method is that the weight for the self-supervised loss needs to be tuned
for each dataset.
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We created a new vision+language task to collect visually-grounded dialogue data. The task is framed 
as a cooperative game in which two players have to come to an agreement on how to rank a set of 
images given some sorting criterion. The task is designed in such a way that it should lead to natu-
rally-flowing conversations between participants discussing visual information and at the same time 
enable the study of the grounding and generation of referring expression in the face of distractors.

Collecting visually-grounded dialogue data with a new vision+language task
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There are few visually-grounded dialogue 
datasets containing symmetric interactions 
of an unrestricted nature that capture 
commonly-observed dialogue phenomena 
and provide the opportunity to study the 
generation and grounding of referring 
expressions in the face of distractors, 
so we created a new vision+language task 
and decided to collect one

Bram Willemsen / bramw@kth.se

Dmytro Kalpakchi, Gabriel Skantze

Robot learning of symbol grounding 
in multiple contexts through dialog

big cat 
be more specific

cat near grass
still ambiguous

big cat near grass
now I got it

Task: a cooperative image ranking game in which two 
players have to reach an agreement on how images should 
be ranked given some sorting criterion

R
ef

er
en

t

“Which cat has the best beard?”

NB: the example dialogue is a highly-simplified artificial example for illustrative purposes only
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1. Extend the action space of RL policy by incorporating variable impedance
2. Our method can be safely deployed on the real robot directly

Learning Impedance Actions for Safe Reinforcement Learning  in 
Contact-Rich Tasks
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Contributions
● Extend the action space of RL policy by incorporating variable impedance
● Our method can be safely deployed on the real robot directly

Variable Impedance Action Space
● The RL agent predicts the stiffness for contact-rich tasks 
● We extend the policy action as the combination of end-effector pose                   in Cartesian 

space and variable stiffness matrix   

This work was partially supported by the Wallenberg AI, Autonomous Systems and Software Program (WASP) funded by the Knut and Alice Wallenberg Foundation.

[1] Karl Pertsch, Youngwoon Lee, and Joseph J. Lim. Accelerating reinforcement learning with learned skill

priors. In Conference on Robot Learning (CoRL), 2020.

Experiment Results
Reinforcement Learning with Skill Priors
● The evidence lower bound (ELBO) to learn a low-dimensional skill latent space[1]:

● Skill prior model                   is used to guide Soft Actor-Critic (SAC) policy

Peg-in-hole contact-rich task: 

Training results:
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Visual localisation is the problem of estimating the camera pose in an environment from a camera 
image. Learning-based solutions, such as end-to-end camera pose regression, propose to solve this 
problem with the help of deep learning. One limitation of such approaches, whether wrapped in a 
probabilistic formulation or not, is that they assume a uni-modal solution to the pose estimation 
problem. While this assumption might hold in environments with unique visual features, it falls apart 
in presence of repetitive structures in the environment, where images from multiple camera poses 
appear visually similar. In this work we propose to learn inference of the complete pose posterior 
distribution that is desirable in such scenarios with multi-modal solutions, via variational inference of 
a simple posterior in a latent space, and learning a map from the latent space to SE(3).

Camera Pose Posterior Inference for Visual Localisation
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Motivation & Research Goals

Visual localisation is the problem of estimating the camera pose in an environment from a camera image. Learning-based solutions,
such as end-to-end camera pose regression, propose to solve this problem with the help of deep learning. One limitation of such
approaches, whether wrapped in a probabilistic formulation or not, is that they assume a uni-modal solution to the pose estimation
problem. While this assumption might hold in environments with unique visual features, it falls apart in presence of repetitive
structures in the environment, where images from multiple camera poses appear visually similar. In this work we propose to learn
inference of the complete pose posterior distribution that is desirable in such scenarios with multi-modal solutions, via variational
inference of a simple posterior in a latent space, and learning a map from the latent space to SE(3).

Background

Visual localisation solutions [1] traditionally fall into 2 groups:

• Image-based (i.e. image retrieval in a database),

• Structure-based (i.e. feature-matching in a map).

Recent learning-based methods attempt to improve the visual localisation
solutions to achieve invariance towards visual conditions such as seasonal
and lighting variations. PoseNet [2] is one of the first methods that at-
tempted to cast visual localisation as an end-to-end absolute pose regres-
sion problem.

Problem: PoseNet and its variants all assume a uni-modal (e.g.
Gaussian) solution to the visual localisation problem.

Method

Objective: Environments with repetitive structures call for a lo-
calisation solution that accommodates multi-modal hypotheses.

This requires a pipeline that for a query image produces the posterior
distribution over possible camera poses. To avoid restricting the posterior
to a fixed parametric form, we opt for a sampling-based solution that
allows the learned distribution to take any form.

We formulate this in a pair of deep networks:

1. First network predicts a posterior distribution for the input query image
in latent space with a simple parametric form such as Gaussian.

2. Second network maps the latent space to SE(3).

The camera pose posterior distribution for a query image can be
simulated by drawing samples from the predicted posterior distribution in
the latent space and passing them through the learned map.

Training of the pair of networks is done via 2 supervision signals:

1. KL-divergence between the posterior distribution in the latent space
and a prior (e.g. standard Gaussian)

2. photometric error between the query image and the image(s) generated
from the camera pose(s) sampled from the posterior distribution

Generative model: A differentiable renderer such as a Neural Ra-
diance Field (NeRF) model [3] pretrained on the scene is used with
volume rendering techniques and an appropriate camera model to
take SE(3) samples back to image data space.

Challenge: Photometric error as a loss function has a small region
of attraction, which requires the samples drawn from the posterior
to be close enough the true mode(s) during training.
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The prediction of pedestrian behavior can help the drivers and the automated vehicles to make smar-
ter and safer decisions and hence to protect the pedestrians from hazardous situations. The interaction 
between pedestrians and vehicles is an essential factor that influences pedestrian behavior. In this 
research, we propose a novel design called the Pedestrian-Vehicle Interaction (PVI) extractor for lear-
ning this interaction from data, and implement the proposed PVI extractor on sequential approaches 
(LSTMs) and non-sequential approaches (CNNs). We use the Waymo Open Dataset consisting of 
real-world traffic scenes with pedestrians and vehicles. The models using our proposed PVI extractor 
outperform the state-of-the-art models. The results show that the proposed PVI extractor can capture 
the interactions between pedestrians and vehicles.

Learning the Pedestrian-Vehicle Interaction for Pedestrian
Trajectory Prediction

AI MLX



Page 100 B

Zhang, Chi
Chalmers

AI MLX



Åkerblom, Niklas
Chalmers / Volvo Car Corporation

101 APage

Energy-efficient navigation constitutes an important challenge for the electrification of personal trans-
portation, due to the limited battery capacity of electric vehicles. In this project, we employ a Bayesi-
an approach to model the energy consumption at road segments for efficient navigation. In order to 
learn model parameters, we develop an online learning framework and investigate several exploration 
strategies, such as Thompson Sampling and Upper Confidence Bound. We also extend the framework 
to a multi-agent setting, where multiple vehicles adaptively navigate and learn the parameters of the 
energy model. To establish performance guarantees, we analyze combinatorial Thompson Sampling 
and derive upper bounds on the expected regret incurred in single-agent and multi-agent settings, 
through analysis of the algorithm under batched feedback. We demonstrate the performance of our 
methods via simulation experiments on several real-world city road networks.

Online Learning for Energy Efficient Navigation in Stochastic Transport 
Networks
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Abstract

Energy-efficient navigation constitutes an important challenge for the electrification of
personal transportation, due to the limited battery capacity of electric vehicles. In this
project, we employ a Bayesian approach to model the energy consumption at road seg-
ments for efficient navigation. In order to learn model parameters, we develop an online
learning framework and investigate several exploration strategies, such as Thompson
Sampling and Upper Confidence Bound. We also extend the framework to a multi-
agent setting, where multiple vehicles adaptively navigate and learn the parameters
of the energy model. To establish performance guarantees, we analyze combinato-
rial Thompson Sampling and derive upper bounds on the expected regret incurred in
single-agent and multi-agent settings, through analysis of the algorithm under batched
feedback. We demonstrate the performance of our methods via simulation experi-
ments on several real-world city road networks.

Background

Widespread adoption of electric vehicle technology is limited by range anxiety. Among
other things, public perception is affected by factors like:

Energy storage capacity limited due to expensive batteries.
Fast-charging infrastructure still sparse.
Still comparatively time consuming to charge batteries.

Oneway to mitigateworries is through better navigation methods. This requires knowl-
edge about the environment!

The problem

How to utilize a limited set of resources (e.g. autonomous vehicle fleet) to
efficiently learn about energy consumption from environment.
Energy-efficient navigation problem: Finding path which minimizes energy
consumption through road network graph.
We consider the energy consumption at different road segments to be stochastic
and a priori unknown.
We want to learn (explore) the parameters of the energy model adaptively while
simultaneously solving the navigation problem.

Energy consumption model

A road network graph may contain millions of edges, hence it is beneficial to utilize
prior knowledge for more efficient exploration.
Bayesian approach: Assume prior over expected energy consumption θe (e.g.
Gaussian conjugate prior) for each edge e:

p(θe | µ0,e, σ2
0,e) = N (θe | µ0,e, σ2

0,e)
Prior uses simplified deterministic energy consumption model based on
longitudinal vehicle dynamics.
Includes knowledge about the vehicle (e.g. mass m, front surface area A) and the
road segment (e.g. length le, average speed ve, slope angle αe):

µ0,e = mgle sin(αe) + mgCrle cos(αe) + 0.5CdAρlev
2
e

3600η

Incrementally update posterior with new observations.

Shortest path problem as multi-armed bandit

We consider the stochastic combinatorial semi-bandit setting, a multi-armed bandit
(MAB) problem where an agent sequentially selects sets of actions (subject to com-
binatorial constraints) instead of individual actions. The objective is to maximize the
long-term expected reward.

Road network graph G(V , E , θ∗), where each edge e has expected edge cost
θ∗

e = −E[r(e)] (we view energy consumption / cost as negative reward −r(e)).
We want to find an optimal action set (edge sequence or path) a∗ in the set of all
paths P between two fixed nodes in V (characterizing the problem instance), such
that:

a∗ = arg min
a∈P

∑
e∈a

θ∗
e

Bayesian regret (time horizon T , prior π0 over mean vector θ∗, and expected reward
function fθ(a) :=

∑
i∈a θi):

BayesRegret(T ) = Eθ∗∼π0

[
E
[∑

T
t=1 (fθ∗(a∗) − fθ∗(at))

∣∣∣ θ∗
]]

Online learning framework

At time t, use exploration method like Thompson sampling (TS) to compute weights
wt.
Find shortest path at w.r.t. weights, e.g. using Dijkstra’s algorithm.
Traverse path at, observe energy consumption −rt and update posterior
parameters.

Algorithm 1 Online learning for energy-efficient navigation

Require: µ0, σ0
1: for t ← 0, 1, . . . , T do
2: wt ← GetEdgeWeights(t, µt, σt)
3: at ← FindShortestPath(wt)
4: rt ← ApplyActionAndObserveReward(at)
5: µt+1, σt+1 ← UpdateParameters(at, rt, µt, σt)

Assign edge weights using bandit algorithms (e.g., TS, BayesUCB):

Algorithm 3 Combinatorial Thompson Sampling
1: procedure GetEdgeWeights(t, µt, σt)
2: for each edge e ∈ E do
3: θ̃e ← Sample from posterior N (µt,e, σ2

t,e)
4: wt,e ← E[ye] where ye ∼ N R(θ̃e, ς2

e )
5: return wt

Algorithm 4 Combinatorial BayesUCB
1: procedure GetEdgeWeights(t, µt, σt)
2: for each edge e ∈ E do
3: wt,e ← max

(
0, Q

(1
t , N (µt,e, σ2

t,e)
))

4: return wt

Regret analysis

We have derive upper bounds on the Bayesian regret of combinatorial TS for the case
where reward feedback is delayed and received in batches of size K:

Combinatorial TS for batched feedback: BayesRegret(T ) ≤ Õ(|E|K + |E|
√

T ).
Extends to non-delayed case (K = 1): BayesRegret(T ) ≤ Õ(|E|

√
T ).

Also extends to multi-agent (vehicle fleet of size K) scenario with synchronous
sharing of observations, with upper bound on fleet (Bayesian) regret:
Õ(|E|K + |E|

√
TK).

Experiments

We utilize SUMO traffic simulation data from real-world traffic networks to provide
realistic traffic patterns and vehicle speed distributions for simulations.
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We evaluate exploration through measured cumulative regret and visual inspection.
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