
WASP WINTER CONFERENCE
2022

Poster Catalogue
SOFTWARE

WASP WINTER CONFERENCE 2022
POSTER CATALOGUE 4/4

SOFTWARE

Author
Andersson, Pontus...
Couderc, Noric...
Etemadi, Khashayar...
Gissurarson, Matthías Páll...
Hrusto, Adha...
Nilsson, Alexander...
Riouak, Idriss..
Rizwan, Momina..
Spanghero, Marco..
Tiwari, Deepika..
Waldemarson, Gustaf...
Zhang, Long..

Pages
164
165
166
167
168
169
170
171
172
173
174
175

A+B
A+B
A+B
A+B
A+B
A+B
A+B
A+B
A+B
A+B
A+B
A+B

Andersson, Pontus
Lund University / NVIDIA

164 APage

In rendering research and development, it is important to have a formalized way of visualizing and
communicating how and where errors occur when rendering with a given algorithm. Such evaluation
is often done by comparing the test image or video to a ground-truth reference. We have presented a
tool for comparing both low and high dynamic range images. Our tool is based on a perception-mo-
tivated image metric. Now, we are exploring how to extend that metric to also convey the differences
in rendered videos, an extension that poses several challenges, as the presence of perceptual effects
increase significantly when we consider spatiotemporal stimuli.

Evaluating Differences Between Rendered Images and Videos

SOFTWARE

Page

Evaluating Differences Between
Rendered Images and Videos

Pontus Andersson, Lund University
Centre for Mathematical Sciences

In rendering research and development, it is important to have a formalized way of visualizing and communicating how and where errors
occur when rendering with a given algorithm. Such evaluation is often done by comparing the test image or video to a ground-truth
reference. We have presented a tool for comparing both low and high dynamic range images. Our tool is based on a perception-
motivated image metric. Now, we are exploring how to extend that metric to also convey the differences in rendered videos, an extension
that poses several challenges, as the presence of perceptual effects increase significantly when we consider spatiotemporal stimuli.

Image Differences: ꟻLIP [1, 2]

References
1. Andersson, P., Nilsson, J., Akenine-Möller, T., Oskarsson, M.,

Åström, K., & Fairchild, M. D. (2020). ꟻLIP: A Difference
Evaluator for Alternating Images. Proceedings of the ACM on
Computer Graphichs and Interactive Techniques, 3(2),
15:1-15:23.

2. Andersson, P., Nilsson, J., Shirley, P., & Akenine-Möller, T.
(2021). Visualizing Errors in Rendered High Dynamic Range
Images. In Eurographics Short Papers.

3. McIlhagga, W. (2018). Estimates of Edge Detection Filters in
Human Vision. Vision Research, 153, 30-36.

Abstract

Video Differences: ?
Evaluates and visualizes the perceived differences
observed when alternating between images

- Removes unperceivable details (spatial filtering)

- Perceptually uniform color space

- Enhancing edge and point errors

- Preferred viewing protocol in rendering

User study: How well does the error map
correspond to the errors you perceive?
Results showed that ꟻLIP corresponds
significantly better to the perceived error
than any of the other metrics in the study.

Through an extension, ꟻLIP handles both
high and low dynamic range imagery [2]

ꟻLIP @ GitHub

Sequences of images are the main focus in rendering.
Importantly, errors that are imperceptible in static images
can be noticeable in videos, and vice versa.

Use cases for a video metric:

- Replace user studies and other expensive video comparisons

- Objective assessment of video generation algorithms

- Cost functions in, e.g., deep-learning-based techniques

Challenges in developing a video metric:

- Motion: How do we perceive errors on moving objects?

- Flicker: How can we determine if flickering is present?

- Complexity: A second of video could contain 240+ images

- Evaluation: Flipping not possible. What can we do instead?

Our research targets a new perception-based video metric:

- Current subproject: Temporal Edge Detection (TED):

- Estimate the temporal edge detection filters in human vision

- This has been done for spatial edge detection filters [3]

- Result used to compare perceptible flicker between videos

164 B

Andersson, Pontus
Lund University / NVIDIA

SOFTWARE

Couderc, Noric
Lund University

165 APage

Writing programs require using both algorithms and data-structures. Most programming languages
provide implementations for some ”classical” data-structures (lists, maps, and sets). The developer
chooses which implementations to use. Unfortunately, programmers are not that good at picking the
data-structure that minimizes runtime.
There is existing work which uses machine learning to provide suggestions to C++ developers. Adap-
ting this work to Java poses new challenges. In this poster, we evaluate how effective this tool is on
Java programs.

Building an data-structure selection tool for Java programs

SOFTWARE

Page

My tool doesn't improve much over the original,

exhaustive search does slightly better

I used machine learning to make

Java programs faster,

It didn't really work

Exhaustive search finds a massive

optimization, but my tool misses it

My tool doesn't improve over the original,

neither does exhaustive search

My tool does slightly better than exhaustive

search on steady state performance

My tool does worse on startup than the original

program

Noric Couderc, Lund University

This is ok

I t's a reproduction study!

Paper with details coming soon!

165 B

Couderc, Noric
Lund University

SOFTWARE

Etemadi, Khashayar
KTH

166 APage

The most natural method for evaluating program repair systems is to run them on bug datasets, such
as Defects4J. Yet, usingthis evaluation technique on arbitrary real world software projects requires
heavy configuration. In this paper, we propose a newmethod, which is purely static, to evaluate the
breadth of the search space of repair approaches. Our key insight is to encode thesearch spaces of
repair approaches by specifying the repair strategies they employ. Next, we use the specifications to
check whetheror not past commits lie in repair search spaces. For a repair approach, including many
human-written past commits in its searchspace indicates its potential to generate useful patches. We
implement our evaluation method in a tool, called LighteR. LighteRgets a Git repository as input and
outputs a list of commits whose corresponding source code changes lie in the search spaces ofrepair
approaches. Using LighteR, we conduct a study on 55,309 commits from the history of 72 Github
repositories and showthat the precision and recall of LighteR are 77% and 92%, respectively. Overall,
our experiments show that our novel method isboth lightweight and effective to study the search spa-
ce of program repair approaches.

Estimating the Potential of Program Repair Search Spaces with
Commit Analysis

SOFTWARE

Page

Estimating Program Repair Potential

with Commit Analysis
Khashayar Etemadi, khaes@kth.se
Theoretical Computer Science Department @ EECS

Context: Running program repair tools is usually very costly [1]. Therefore, it is not an efficient way to assess the

strength of program repair tools.

Contribution: We propose a new purely static method, which is purely static, to evaluate the breadth of the search

space of repair approaches. Our key insight is to encode the search spaces of repair approaches by specifying the

repair strategies they employ. Next, we use the specifications to check whether or not past human-made commits

lie in repair search spaces. Our method is implemented in LighteR, with precision and recall of 77% and 92%,

respectively. We find that 1.35% of 55,309 commits from 72 projects lie in search spaces of eight considered tools.

Overview of LighteR’s Approach

Sample Strategy Specification for GenProg

1- Durieux, Thomas, et al. "Empirical review of Java program repair
tools: A large-scale experiment on 2,141 bugs and 23,551 repair
attempts." Proceedings of the 2019 27th ACM Joint Meeting on
European Software Engineering Conference and Symposium on the
Foundations of Software Engineering. 2019.
2- Falleri, Jean-Rémy, et al. "Fine-grained and accurate source code
differencing." Proceedings of the 29th ACM/IEEE international
conference on Automated software engineering. 2014.
3- Martinez, Matias, and Martin Monperrus. "Coming: A tool for mining
change pattern instances from git commits." 2019 IEEE/ACM 41st
International Conference on Software Engineering: Companion
Proceedings (ICSE-Companion). IEEE, 2019.

References

Identifying Repair-space Commits:
●Uses GumTree [2] to extract AST actions.
●Uses Coming [3] to match actions with

specification.
●Uses post-matching rules to discard non-

synthesizable patches.

Considered Tools:
Arja, Cardumen, Elixir, GenProg, jMutRepair, Kali,

Nopol, NPEfix

Actionable Implications:
●Prototyping of New Repair Approaches by

Researchers
●Evaluation of the Potential Value of Using

Program Repair by Practitioners

References

166 B

Etemadi, Khashayar
KTH

SOFTWARE

Gissurarson, Matthías Páll
Chalmers

167 APage

This poster presents the use of typed-hole synthesis in PropR, a property-based automatic repair tool
for Haskell that uses genetic programming to automatically repair Haskell programs. Haskell pro-
grams are often annotated with very specific types and come with a large suite of property-based tests
in addition to unit tests. Using those properties and unit tests, we can isolate the parts of the code
involved in a failing test case, and then we can leverage the available type information by integrating
with the valid hole-fit synthesis in the GHC compiler to do accurate synthesis of well-typed programs
as possible repairs for the fault-involved expressions.

Using Typed-Holes in Haskell for Property-Based Automatic Program Repair

SOFTWARE

Page

Using Typed-Holes in Haskell for
Property-Based Automatic Program Repair

Matthías Páll Gissurarson,
Chalmers University of Technology

Department of Computer Science and Engineering

We present the use of typed-hole synthesis in PropR, a property-based automatic repair
tool for Haskell that uses genetic programming to automatically repair Haskell programs.

References
1. Gissurarson, M. P., Leonhard, A., Panichella, A., Deursen, A., Sands, D. 2022. PropR:

Property-Based Automatic Program Repair. To be published at the 44th International
Conference on Software Engineering (ICSE 2022), Pittsburgh, PA, USA.

2. Claessen, K., & Hughes, J. 2000. QuickCheck: a lightweight tool for random testing of
Haskell programs. In Proceedings of the fifth ACM SIGPLAN international conference
on Functional programming (ICFP '00), Montreal, Canada.

3. Gissurarson, M. P. 2018. Suggesting Valid Hole Fits for Typed-Holes (Experience
Report). In Proceedings of the 11th ACM SIGPLAN International Haskell Symposium
(Haskell ’18), St. Louis, MO, USA.

Abstract

Haskell programs are often annotated with very specific types
and come with a large suite of property-based tests in
addition to unit tests. Using those properties and unit tests,
we can isolate the parts of the code involved in a failing test
case, and then we can leverage the available type information
by integrating with the valid hole-fit synthesis in the GHC
compiler to do accurate synthesis of well-typed programs as
possible repairs for the fault-involved expressions [1].

PropR: Property-Based
Automatic Program Repair

The Test-Localize-
Synthesize-Rebind Loop

PropR is based on a Test-Localize-Synthesize-Rebind loop
(TLSR), shown in the figure to the right [1]. We begin by
parsing the source code and discovering properties1, as
defined by the name and/or type of the functions in the
provided source ①. By inspecting these properties ②, we
determine top-level targets for repair. We rebind these to
mutable expressions (making no changes initially, keeping
the original target intact) ③. We test the properties using
QuickCheck [2] to determine which ones fail ④, and use
the generated counter-examples to determine the fault-
involved sub-expressions in the targets ⑤. Then we
perforate the targets by replacing each fault-involved sub-
expression with a typed-hole2⑥. By using GHCs built-in
valid hole-fit3 synthesis in conjunction with a hole-fit plugin,
we synthesize candidate fixes in place of these holes based
on their type ⑦ and mined expressions from the source
code. We then evaluate the candidates by replacing the
holes in the targets with candidate fixes ⑧ and apply
genetic search to select ⑨ potential fixes based on how
well the program would perform on the test-suite if they
were to be applied. After selection, we apply the selected
fixes to the program⑩ by replacing sub-expressions in the
targets using the selections. If all properties are now
satisfied, we've found a repair, and output it as a diff ⑪,
otherwise we apply the current fixes③ to the program and
repeat until we succeed or run out of search budget [1].

1 Properties are testable assertions in the code. They can either
be unit-tests (i.e. an input-output pair) or more generic, e.g.
prop_fIsPositive n = (f n) > 0, is tested by generating random n
and checking that the property holds. When QuickCheck finds a
value for which the property does not hold, it shrinks it (i.e.
minimizes it) and returns it as a counter-example [2].

2 A typed-hole is a placeholder value for unknowns in code, and
include a type inferred from the context and other constraints
based on where it is placed in the source code. A typed-hole is
represented by an underscore (_) in Haskell source-code.

3 A valid hole-fit is an expression that matches the type of the
hole. In GHCs, these can be synthesized by the compiler, either
a simple fit (e.g. sum for (_ :: [Int] -> Int)) or a more complex
refinement hole-fit (e.g. (foldl (+) :: [Int] -> Int) [3].

167 B

Gissurarson, Matthías Páll
Chalmers

SOFTWARE

Hrusto, Adha
Lund University

168 APage

DevOps represent the tight connection between development and operations. To address challenges
that arise on the borderline between development and operations, we conducted a study in collabo-
ration with a Swedish company responsible for ticket management and sales in public transportation.
The aim of our study was to explore and describe the existing DevOps environment, as well as to
identify how the feedback from operations can be improved, specifically with respect to the alerts sent
from system operations. Therefore, we design a solution to improve the alert management by opti-
mizing when to raise alerts and accordingly introducing a new element in the feedback loop, a smart
filter. Moreover, we implemented a prototype of the proposed solution design using a hybrid method
that combines rule-based and unsupervised machine learning for operations data analysis.

Closing the Feedback Loop in DevOps Through Autonomous Monitors
in Operations

SOFTWARE

Page

Closing the Feedback Loop in DevOps Through
Autonomous Monitors in Operations

Adha Hrusto, Lund University
Department of Computer Science

DevOps represent the tight connection between development and operations. To address challenges that arise on the borderline
between development and operations, we conducted a study in collaboration with a Swedish company responsible for ticket
management and sales in public transportation. The aim of our study was to explore and describe the existing DevOps environment,
as well as to identify how the feedback from operations can be improved, specifically with respect to the alerts sent from system
operations. Therefore, we design a solution to improve the alert management by optimizing when to raise alerts and accordingly
introducing a new element in the feedback loop, a smart filter. Moreover, we implemented a prototype of the proposed solution design
using a hybrid method that combines rule-based and unsupervised machine learning for operations data analysis.

Research approach

References
1. Adha Hrusto, Per Runeson, and Emelie Engström (2021).

Closing the Feedback Loop in DevOps Through
Autonomous Monitors in Operations. SN Computer
Science 2, 6 (Aug. 2021).
https://doi.org/10.1007/s42979-021-00826-y

Abstract

Problem conceptualization.
We identified alert targeting,
signal to noise optimization,
and system interoperability
as being three important
problem instances of the
general alert flooding
problem in the feedback from
operations to development.

Selected Results
Our study is a problem-driven
design science approach as
shown in Figure 1. We explored
how the general problem, of
incorporating feedback from
operations in the development,
manifests as a problem instance
in the industrial context under
study. For that purpose, we
conducted interviews and
performed observations in the
case company to identify and
articulate the main problems on
which to focus further improvements. In the problem
conceptualization step, we identified three problem instances
related to alert flooding, which is a phenomenon that appears in
a case of a high number of alerts that are not properly managed.
We provided a conceptual design for only one of the problem
instances, alert flooding as an optimization problem since it
causes the highest information overflow in the feedback loop.
Moreover, alongside the proposed solution design, we
implemented a prototype instance to get a better
understanding of the opportunities of the available operations
data, its type, and characteristics as well as the constraints of
the context. We partially evaluated the implemented solution
using the limited data set for implementation of the baseline
anomaly detection method in a prototype environment.

CASE DESCRIPTION
The system under study is a backend system of an application
for ticketing and payments used in public transportation. It is a
cloud-based system with a microservice architecture that
consists of 20 services, developed using Microsoft tools and
services. The health status of each service is monitored using
the Azure Monitor through which various performance metrics
and logs are available to use for alerting and visualization.

Figure 1 Overview of the Design Science approach

Figure 2 Overview of the proposed solution design

Solution design. We designed a solution for more effective
processing of data available through the monitoring system in
operations by introducing a smart filter in the feedback loop as
shown in Figure 2. The smart filter is a unique technical solution
that combines various systems’ and applications’ metrics for
learning advanced alert rules (see Table 1).
Prototype implementation. We performed a pilot
implementation of the proposed solution in the case environment
as a proof of concept for further work. In the implementation of
the prototype solution, we used unsupervised anomaly detection
throughout the labeling process of unlabeled operations data
while also considering the service vulnerability and observed
metrics frequency (see Table 1). Further, for generating new
advanced alert rules, a supervised tree-based machine learning
technique was used.

Evaluation. We also implemented
multivariate anomaly detection
(MAD) to validate our prototype by
comparing it with the pure
unsupervised ML technique for
detecting outliers, representing
alerts, in multivariate unlabeled data
set. The results revealed that the
MAD trained model does not scale
very well the number of predicted
alerts, thus, producing the same
level of noise and several alert
floods. On the other hand, the smart
filter produces less noise around
actual failures and more accurately
predicts isolated alerts in case of
short system’s glitches.

Selected
metrics

CPU
Time

Num. of failed
requests

Num. of
exceptions

Num. of dep.
failures

Http 4xx
errors

Http 5xx
errors

Num. of
requests

Response
time

Services with
known

vulnerabilities

Service B – buying
tickets on vending
machines

Service G – service for
validating selected
locations

Service M –> main
service for ticketing

Service P –> bridge to
an external payment
service

Example of a
decision rule

IF num_of_failed_requests_SG > threshold_1 AND response_time_SB > threshold_2 AND num_
of_Http500_SB > threshold_3 THEN send_notification

Table 1 Overview of the selected data, service vulnerabilities and desired decision rules

Figure 3 Distribution of raised alerts in the
test data

168 B

Hrusto, Adha
Lund University

SOFTWARE

Nilsson, Alexander
Lund University

169 APage

Vulnerabilities found in crypto algorithms “HQC” and “BIKE”
Next-generation public-key encryption algorithms “HQC” and “BIKE”, which are code-based key
encapsulation mechanisms, share a vulnerability due to the use of Rejection Sampling in their decaps-
ulation mechanisms.
An attacker can use this vulnerability to craft special messages by which a complete secret-key recove-
ry can be achieved.
The time-complexity of this attack is low enough to be practically managed within a couple of days, in
an ideal lab scenario.

Timing-Attacks on Post-Quantum Cryptographic Primitives

SOFTWARE

Page

Timing-Attacks on Post-Quantum
Cryptographic Primitives
Alexander Nilsson, Lund University

Dept. Electrical and Information Technology, Faculty of Engineering LTH

Next-generation public-key encryption algorithms “HQC” and “BIKE”, which are code-based key encapsulation mechanisms,
share a vulnerability due to the use of Rejection Sampling in their decapsulation mechanisms.

An attacker can use this vulnerability to craft special messages by which a complete secret-key recovery can be achieved.
The time-complexity of this attack is low enough to be practically managed within a couple of days, in an ideal lab scenario.

Post-Quantum Cryptography

References
1. Qian Guo, Thomas Johansson, and Alexander Nilsson. "A key-recovery timing

attack on post-quantum primitives using the Fujisaki-Okamoto transformation
and its application on FrodoKEM." Annual International Cryptology Conference.
Springer, Cham, 2020.

2. Clemens Hlauschek, Norman Lahr, Robin Leander Schröder, Qian Guo,
Thomas Johansson, and Alexander Nilsson, ”Key recovery attacks on BIKE
and HQC, due to Rejection Sampling”

3. Alexander Nilsson, Thomas Johansson, and Paul Stankovski. "Error
Amplification in Code-based Cryptography." IACR Transactions on
Cryptographic Hardware and Embedded Systems (TCHES) 2019.1 (2018):
238-258.

4. Qian Guo, Thomas Johansson, and Paul Stankovski. ”A key recovery attack on
MDPC with CCA security using decoding errors”. ASIACRYPT 2016, Springer,
Heidelberg, December 2016

Vulnerabilities found in crypto algorithms “HQC” and “BIKE”

The Hamming Weight ℎ𝑤𝑤(𝑣𝑣) denotes the number of set bits
in the bit vector 𝑣𝑣.

Both BIKE and HQC need to generate uniformly random error
vectors 𝑒𝑒, where ℎ𝑤𝑤 𝑒𝑒 = 𝑇𝑇, where T is a constant parameter.

Rejection sampling does this by iteratively generating random bit
positions and rejecting invalid positions. This is an efficient way of
ensuring uniform randomness of specific weights.

It is, however, very hard to implement it such that the run-time,
or number of samplings, of the algorithm does not depend on its
input (such as the seed for the random number generator).

Because of this the input to the rejection sampling algorithm must
be comprised entirely of public values, or be derived from entirely
public values.

Rejection Sampling
Quantum computers threaten to break most of the encryption
in use over the internet today. Therefore, new algorithms are
needed.

NIST is currently in an open process to standardize a small
number of new public-key primitives for encryption and digital
signatures. Among the few remaining candidates are
the code-based key encapsulation mechanisms “HQC”
and “BIKE”.

KEM/PKE Scheme Type Vulnerable to
Rejection
Sampling Timing
Attack

Finalists
Classic McEliece Code-based NO
Kyber Lattice NO
NTRU Lattice NO
SABER Lattice NO

Alternates
BIKE Code-based YES
FrodoKEM Lattice NO
HQC Code-based YES
NTRU Prime Lattice NO
SIKE Supersingular

elliptic curve
isogeny

NO

The Vulnerability [ref]
An important property in code-based schemes is the malleability
of the ciphertexts. This means that it is inherently possible to
slightly modify the ciphertext by a small amount and still decrypt to
the very same plaintext.

This is an undesired property of highly secure KEM/PKE
schemes, and the most common way to resolve the issue has
been shown to open up PKE/KEM schemes to hitherto unknown
timing attacks. [1]

In the current work [2] we show how to adapt the known attack to
apply also to the Rejection Sampling algorithm employed by BIKE
and HQC. In this work we rely on techniques from [3] and [4].

169 B

Nilsson, Alexander
Lund University

SOFTWARE

Riouak, Idriss
Lund University

170 APage

Static program analysis plays a fundamental role in software development and may help developers
detect subtle bugs such as null pointer exceptions or security vulnerabilities. We present IntraCFG,
a language-independent framework for constructing precise intraprocedural control-flow graphs
(CFGs) superimposed on the Abstract Syntax Tree (AST). Source-level dataflow analysis permits
easier integration with the IDEs and Cloud tools since the reports can be directly linked to the source
code and do not require producing the Intermediate Representation (IR).

A Precise Framework for Source-Level Control-Flow Analysis

SOFTWARE

Page

A Precise Framework for Source-Level Control-
Flow Analysis

Idriss Riouak*, Christoph Reichenbach*, Görel Hedin*, and Niklas Fors
*idriss.riouak, christoph.reichenbach, gorel.hedin, and niklas.fors (@cs.lth.se)

Department of Computer Science, Lund University, Sweden

Static program analysis plays a fundamental role in software development and may help developers detect subtle
bugs such as null pointer exceptions or security vulnerabilities. We present IntraCFG, a language-independent
framework for constructing precise intraprocedural control-flow graphs (CFGs) superimposed on the Abstract Syntax
Tree (AST). Source-level dataflow analysis permits easier integration with the IDEs and Cloud tools since the reports
can be directly linked to the source code and do not require producing the Intermediate Representation (IR).

OUR APPROACH

CONCLUSIONS & FUTURE WORK

DESCRIPTION

EXPERIMENTS
We build the CFGs on top of the AST using Reference
Attribute Grammars (RAGs). Highlights of our approach:
• Handles implicit control flow
• Fully declarative specification using JastAdd2
• Overcomes the limitations of an earlier RAG

framework, eliminating misplaced and redundant
nodes in the constructed CFGs.

FRAMEWORK

INTERFACE ASTNODE

CFGRoot MethodDecl, ConstructorDecl, …

CFGSupport WhileStmt, IfStmt, …

CFGNode All the ASTNodes that might appear in the CFGs.

IntraCFG is a language-independent RAGs
framework that overcomes the limitation of
the earlier approaches:
• High-Precision
• ≥30% fewer nodes

We plan to:
• extend the support of IntraJ to Java 8
• extend IntraCFG to construct inter-procedural CFGs

The IntraCFG interfaces provide client APIs for the
successor and predecessor relations, and default
behaviour that simplifies constructing CFGs for a
specific language. We used IntraCFG to construct
high-precision CFGs for Java 7, extending the ExtendJ
Java compiler.

We compared the results of IntraJ with:
• JastAddJ–Intraflow (JJI): a RAG based framework
• SonarQube: a highly tuned static analyser
We used as benchmarks:

33K LOC 49K LOC 95K LOC 97K LOC

• CFG size reduced by 30-40%

0

50000

100000

150000

200000

250000

300000

350000

400000

ANTLR PMD JFC FOP ANTLR PMD JFC FOP

IntraJ JastAddJ-Intraflow

Nodes in CFGs # Edges in CFGs

We compared the precision and the performance of IntraJ
against SonarQube by implementing two dataflow analyses:
• Dead Assignment Analysis [DAA]
• Null Pointer Analysis [NPA]
DAA

NPA

Null Pointer AnalysisDead Assignment Analysis

ANTRL PMD JFC FOP
0
5

10
15
20
25
30
35
40

ANTRL PMD JFC FOP

SonarQube

Baseline

IntraJ

ANTRL PMD JFC FOP
0
2
4
6
8

10
12
14
16
18
20

ANTRL PMD JFC FOP

Se
co
nd
s

• Higher precision and better overall performance

• Concise CFG specification
• Competitive to SonarQube

170 B

Riouak, Idriss
Lund University

SOFTWARE

Rizwan, Momina
Lund University

171 APage

Ensuring functional safety has become more challenging as robots work in a dynamic and unpre-
dictable environment. A functionally safe autonomous system performs correctly given a set of inputs
and if it receives an unknown input, then it fails predictably. While making a robot safe, sometimes
we over-constrain the system that makes the robot incapable of doing anything useful. For example,
turning off the robot whenever something unexpected happens is not a good recovery strategy. Spe-
cifying static safety constraints is a conservative approach. We develop a domain-specific language
(DSL) that facilitates the user to specify dynamic safety specifications. A DSL allows us to reason at
an abstract level making it easier to handle abstract domain-specific concerns like functional safety.
Domain-specific modeling also allows us to validate if a system behaves as expected.

A Domain-Specific language to express dynamic functional safety rules

SOFTWARE

Page

A static safety constraint hinders a robot to

do anything useful!

ADomain-Specific Language to express dynamic robot safety
rules
Momina Rizwan, Christoph Reichenbach and Volker Krueger

Motivation & Research Goal
Ensuring functional safety has become more challenging as robots work in a
dynamic and unpredictable environment.

“A functionally safe autonomous system performs correctly given a set of
inputs and if it can’t, it fails predictably.”

Static safety rules over-constrain the system that makes the robot incapable
of doing anything useful. Turning off the robot whenever something
unexpected happens is not a good strategy. In our research, we try to
replicate the work by [S.Adam et. al.] [1] and add dynamic safety rules.

Safety scenarios

1.Avoid damaging jerks while crossing uneven terrain (IMU)
2.Handle ramps in an industrial setting (IMU)
3.Handle partially closed doors (LIDAR)
4. Robot arm should never hit anything (Force Sensor)

Dynamic recovery strategy follow the rule:

“As soon as the input sensor reading is in safe-range, continue the task.”

•When the ramp slope is gentle, slow down, go back and find a new path
•When the ramp slope is steep, speed up a bit so it can cross the ramp

Safety Node As a Filter

/move_base

move_base_node
/gazebo_sim

gazebo_plugin

/mir_bridge

mir_bridge
/move_base_node

move_base_node

/move_base_node

safety_node

/unfil_cmd_vel

/cmd_vel

/cmd_vel

/f_scan

sensor_info_node

/scan
/b_scan

/amcl

/tf
/tf

/tf

Why use a Domain Specific Language?

•To reason about domain specific concepts that are easier to understand by
non-experts [2].

•One can do domain specific static analysis and report errors early.
•Better error reporting.

A code snippet (Syntax is in the style of Ulrik’s
work [1])

action moveBack ;
action lowSpeed ;
action increaseSpeed ;
const maxSpeed = 0.5 m/s
const reasonabletilt = 10 deg
const maxtilt = 20 deg
input orientation = topic
imu_information
entity imuSensorSystem
{

gentleSlope :
orientation.pitch() not in reasonabletilt
for 4.0 sec;

steepRamp :
orientation.pitch() not in maxtilt

}
entity driveSystem {

maxspeedExceeded :
linearSpeed > maxSpeed for 2.0 sec ;

}
if imuSensorsystem.gentleSlope and driveSystem.moving
then { increaseSpeed ;} ;
if imuSensorsystem.steepRamp and driveSystem.moving
then { lowSpeed ; moveBack; } ;

0

*
References

[1] S. Adam, M. Larsen, K. Jensen, and U. P. Schultz, “Rule-based dynamic
safety monitoring for mobile robots,” Journal of Software Engineering for
Robotics, vol. 7, no. 1, pp. 121–141, 2016.

[2]A. Nordmann, N. Hochgeschwender, and S. Wrede, “A survey on
domain-specific languages in robotics,” in International conference
on simulation, modeling, and programming for autonomous robots,
pp. 195–206, Springer, 2014.

171 B

Rizwan, Momina
Lund University

SOFTWARE

Spanghero, Marco
KTH

172 APage

Precise time and position obtained by GNSS receivers is an integral part of a wide gamut of strategic
infrastructure. Demonstrations of attacks highlight the vulnerability of current civilian GNSS signals.
Advanced countermeasures using external information and receiver properties can be used to detect
advanced spoofer and recover from attacks. The poster describes both aspects, with a specific outlook
on time focused receivers.

Attacking and protecting GNSS receivers

SOFTWARE

Page

Attacking and protecting GNSS receivers
Marco Spanghero, KTH Royal Institute of Technology

Networked Systems Security (NSS) group, www.eecs.kth.se/nss
Main advisor: Panos Papadimitratos

Precise time and position obtained by Global Navigation Satellite System (GNSS) receivers are an integral part of a wide gamut of
strategic infrastructure. Demonstrations of attacks highlight the vulnerability of current civilian GNSS signals. Advanced
countermeasures using external information and receiver properties can be used to detect advanced spoofer and recover from attacks.
Specifically, integration of different time sources can tackle various spoofing scenarios, from simple cases of simulation to advanced
signal lift-off.

GNSS Replay/Relay attacks

References
[1] K. Zhang, M. Spanghero, and P. Papadimitratos, “Protecting GNSS-based
Services using Time Offset Validation,” in 2020 IEEE/ION Position, Location and
Navigation Symposium (PLANS), Portland, Oregon, April 2020.
[2] M. Spanghero, and P. Papadimitratos, “Detecting GNSS misbehaviour with high-
precision clocks. WiSec 2021”, in Proceedings of the 14th ACM Conference on
Security and Privacy in Wireless and Mobile Networks, Virtual.
[3] M. Spanghero, K. Zhang, and P. Papadimitratos, “Authenticated time for
detecting GNSS attacks,” in Proceedings of the 33rd International Technical Meeting
of the Satellite Division of the Institute of Navigation, ION GNSS+ 2020, Virtual
[4] M. Lenhart, M. Spanghero, and P. Papadimitratos, “Relay/replay attacks on gnss
signals,” in Proceedings of the 14th ACM Conference on Security and Privacy in
Wireless and Mobile Networks, Virtual.

Motivation & Research Goals

We seek a general-purpose framework that enables validation of
the GNSS time information [1]. Fusion of multiple (secure)
network time sources [2] provides online verification, using
different off-the-shelf technologies.
Local high-precision clocks can be leveraged as an ensemble to
guarantee enhanced holdover under attack even when connectivity
is not available, reducing the remote timing service polling
frequency [3].

Time based attack detection
Replay of GNSS signals will be of increasing importance with the
upcoming shift to authenticated signals [4]. Extending from simple
meaconing to over-the-network-meaconing allows to break free
of the limitations imposed by a physical connection.

Combination of multiple time sources is not trivial and requires
knowledge of the source characteristics: fusion can be possible
with stochastic filtering, providing statistical indicators of GNSS
time misbehavior (i.e. Kalman filtering).

Selected results:
Meaconing of mobile and static targets was successful over
consumer 4G networks, by either replaying the entire spectrum
(bandwidth intensive) or by surgically replaying navigation
messages using meacon and recreate strategies (future proof
against authenticated navigation messages).

We developed a future-proof, flexible
and versatile GNSS testing platform.
Our modular prototype will enable
research on security enhanced signals,
allowing mobile scenario testing without
requiring any regulatory permission.

Selected results:
• Detection based on opportunistic WiFi beacons with a 25µs

threshold
• Multi-technology fusion framework for GNSS attack detection
• Local oscillator ensemble-based detection with 0.3µs threshold

and dual frequency/phase indicator for advanced attack detection

172 B

Spanghero, Marco
KTH

SOFTWARE

Tiwari, Deepika
KTH

173 APage

Context: End users may interact with software in ways that are not well-tested.
Contribution: We propose to monitor software in production, in order to automatically improve the
effectiveness of test suites. The generated tests can complement developer-written tests, and represent
real usages of the application in production.

Tests from Production Traces

SOFTWARE

Page

Tests From Production Traces
Deepika Tiwari deepikat@kth.se

Division of Software and Computer Systems,
School of Electrical Engineering and Computer Science

Context: End users may interact with software in ways that are not well-tested [1].
Contribution: We propose to monitor software in production, in order to automatically
improve the effectiveness of test suites. The generated tests can complement
developer-written tests [2], and represent real usages of the application in production [3].

References
1. Wang, Q., Brun, Y., & Orso, A. (2017, March). Behavioral execution comparison: Are tests representative of field behavior?. In

2017 IEEE International Conference on Software Testing, Verification and Validation (ICST). IEEE.
2. Tiwari, D., Zhang, L., Monperrus, M., & Baudry, B. (2021). Production Monitoring to Improve Test Suites. IEEE Transactions on

Reliability.
3. Zetterlund, L., Tiwari, D., Monperrus, M., & Baudry, B. (2022, April). Harvesting Production GraphQL Queries to Detect Schema

Faults. In 2022 IEEE International Conference on Software Testing, Verification and Validation (ICST). IEEE.
4. Zhang, L., Tiwari, D., Morin, B., Baudry, B., & Monperrus, M. (2021). Automatic Observability for Dockerized Java Applications.

Submitted to IEEE Transactions on Dependable and Secure Computing.

￼

PANKTI: Automated unit test generation [2]
● Generate tests that improve the test quality of 53

weakly-tested methods in 3 open-source Java
applications

AutoGraphQL: Tests from GraphQL requests [3]
● Find 8 schema faults in 1 industrial application
● Improve coverage in 1 open-source application

Future work
● Monitor the invocation of methods within target

methods in production [4]
● Use the collected data for the automated

generation of mocks

173 B

Tiwari, Deepika
KTH

SOFTWARE

Waldemarson, Gustaf
Lund University / Arm

174 APage

This project aims to improve the efficiency of parallel programming of GPUs in heterogeneous ar-
chitectures and environments, potentially leading to new frameworks and algorithms for, e.g., more
realistic lighting in graphics systems or higher performance computing in real-time software systems.
The aim is to enhance or produce programming tools that can be used to process large datasets from
e.g. computer vision, deep learning, data visualization, or other graphics rendering or systems by
using the potential available in modern platforms that contain GPUs and other accelerators.

Efficient GPU Programming for Visual and Autonomous Software Systems

SOFTWARE

Page

EfficientGPUProgramming forVisual and
AutonomousSoftwareSystems

Gustaf Waldemarson Ind. PhD, Arm Ltd and Lund University
Dept. of Computer Science, Lund University Graphics Group

Supervisors: Michael Doggett (LU) and Simone Pellegrini (Arm Ltd)

Motivation & Research Goals

This project aims to improve the efficiency of parallel programming of GPUs in heterogeneous architectures and environments,
potentially leading to new frameworks and algorithms for, e.g., more realistic lighting in graphics systems or higher performance
computing in real-time software systems. The aim is to enhance or produce programming tools that can be used to process large
datasets from e.g. computer vision, deep learning, data visualization, or other graphics rendering or systems by using the potential
available in modern platforms that contain GPUs and other accelerators.

Methods

When devising high-performance algorithms, it is often beneficial to de-
couple the algorithm itself from scheduling and performance aspects. As
an example, the Halide [3] framework (see below) has successfully done
just this for the domain of image filters and as a part of this research we
are investigating similar DSLs for generating 3D content, such as rasteri-
zation or ray tracing.

Func blur_3x3(Func input) {
Func blur_x, blur_y;
Var x, y, xi, yi;
// The algorithm - no storage or order
blur_x(x,y) = (input(x-1,y) + input(x,y) + input(x+1,y))/3;
blur_y(x,y) = (blur_x(x,y-1) + blur_x(x,y) + blur_x(x,y+1))/3;
// The schedule - defines order, locality; implies storage
blur_y.tile(x, y, xi, yi, 256, 32)

.vectorize(xi, 8).parallel(y);
blur_x.compute_at(blur_y, x).vectorize(x, 8);
return blur_y;

}

trace()

Ray Generation

Acceleration
Structure
Traversal

Miss Closest Hit

No YesHit?

Any Hit

Intersection

As seen above, one of the core components in ray tracing is the
acceleration structure. It is the single greatest thing that deter-
mines how well ray tracing algorithms perform [2]. Thus, a lot
of research has been devoted to understanding how to make this
better. As a part of our research, we are investigating how to
specialize this structure for particular use cases.

Physically Based Rendering

Nature is a complicated beauty with many areas that we still do not fully
understand. Even when we limit ourselves to only light transport, there
are many things that we are not modeling yet. Thus, another part of this
research is to extend the toolkit of physical phenomena we can simulate
using ray-tracing or rasterization based methods.

Lo(x, ωo) = Le(x, ωo) +

∫

Ω

fr(x, ωi, ωo)Li(x, ωi)(ωi · n) dωi

X

n

The Rendering Equation,
the basis for almost all
graphics algorithms.

Selected Results

One of the physical phenomena that is modeled as a part of this project
is the transient light known as Cherenkov radiation. A few examples of
this phenomenon can be seen below and for more details please see our
work in 1.

Recent research has been fo-
cused on creating efficient
rendering algorithms for the
so called glow discharge phe-
nomenon, seen here.

References

[1]

G. Waldemarson and M. Doggett, “Photon Mapping Superluminal
Particles,” in Eurographics 2020 - Short Papers, A. Wilkie and F.
Banterle, Eds., The Eurographics Association, 2020, isbn: 978-3-
03868-101-4. doi: 10.2312/egs.20201004

[2]
D. Meister, S. Ogaki, C. Benthin, et al., “A Survey on Bounding
Volume Hierarchies for Ray Tracing,” Computer Graphics Forum,
2021, issn: 1467-8659. doi: 10.1111/cgf.142662

[3]

J. Ragan-Kelley, A. Adams, D. Sharlet, et al., “Halide: Decoupling
algorithms from schedules for high-performance image process-
ing,” Commun. ACM, vol. 61, no. 1, pp. 106–115, Dec. 2017, issn:
0001-0782. doi: 10.1145/3150211. [Online]. Available: https:
//doi.org/10.1145/3150211

174 B

Waldemarson, Gustaf
Lund University / Arm

SOFTWARE

Zhang, Long
KTH

175 APage

Chaos engineering is a new scientific method within software engineering that consists in specify-
ing and evaluating resilience hypotheses by 1) injecting faults in a production system, 2) observing
the impact of such faults, and 3) building new knowledge about the strengths and weaknesses of the
resilience of the system. Chaos engineering can be applied at different levels such as network level and
infrastructure level. In order to provide more concrete and application-specific insights for develo-
pers, our research work focuses on using application-level chaos engineering to address the following
challenges: C1-How to evaluate different aspects of resilience, C2-How to automate the chaos experi-
ments, and C3-How to improve the efficiency of the chaos engineering experiments.

Application-level Chaos Engineering

SOFTWARE

Page

Application-level Chaos Engineering
Long Zhang <longz@kth.se>, KTH

Main advisor: Martin Monperrus

Chaos engineering is a new scientific method within software engineering that consists in specifying and evaluating resilience
hypotheses by 1) injecting faults in a production system, 2) observing the impact of such faults, and 3) building new knowledge about the
strengths and weaknesses of the resilience of the system. Chaos engineering can be applied at different levels such as network level
and infrastructure level. In order to provide more concrete and application-specific insights for developers, our research work focuses on
using application-level chaos engineering to address the following challenges: C1-How to evaluate different aspects of resilience,
C2-How to automate the chaos experiments, and C3-How to improve the efficiency of the chaos engineering experiments.

ChaosMachine

References
1. Zhang et al, A Chaos Engineering System for Live Analysis

and Falsification of Exception-Handling in the JVM, IEEE TSE,
2019.

2. Zhang et al, TripleAgent: Monitoring, Perturbation and Failure-
Obliviousness for Automated Resilience Improvement in Java
Applications, IEEE 30th International Symposium on Software
Reliability Engineering (ISSRE), 2019.

3. Zhang et al, Automatic Observability for Dockerized Java
Applications, arXiv preprint:1912.06914, 2019.

4. Zhang et al, Maximizing Error Injection Realism for Chaos
Engineering with System Calls, IEEE TDSC, 2021.

Abstract

In order to address C2, we propose to design orchestration
frameworks to connect monitoring, injection, and analysis. For
most of the existing chaos engineering tools, there are several
limitations: 1) steady state and hypotheses have to be manually
defined, 2) the installation of a tool may be complicated, and 3)
the setup of an experiment may be tedious.

Thus we propose a technique cal led POBS (imProved
OBServability) to statically analyze and transform Docker
configuration fi les of Java applications in order to inject
observability capabilities [3].

For example, POBS allows developers to observe the JVM
memory or CPU usage of their application with minimal effort:
a single line change in the Docker configuration.

POBS

In order to address C1, we propose to use different perturbation
models at the application level [1,2]. This is because: application-
level perturbation models are closer to the application’s source
code, which helps developers to locate the improvement target,
and such models simulate more concrete failure scenarios for
this specific application.

Building confidence in system behavior through EXPERIMENTS in RUNTIME

Java Virtual Machine Java Virtual Machine Javaagent, Java byte-code, ASM

• Input
• Arbitrary software in Java
• Hypotheses

• Architecture
• Monitoring sidecars
• Perturbation injectors
• Chaos controller

• Output
• Resilience report

Perturbation model: try-catch block short-circuit testing
• A corresponding exception at the beginning
• The whole try block is made invalid

Hypotheses
• RH (Resilience hypothesis)
• OH (Observability hypothesis)
• DH (Debug hypothesis)
• SH (Silence hypothesis)

Evaluation
• 3 large-scale and well-known Java applications totaling 630k

lines of code

Phoebe

In order to address C3, we present a novel fault injection
framework for system call invocation errors, called Phoebe [4].
Phoebe is unique as follows. First, Phoebe enables developers
to have full observability of system call invocations. Second,
Phoebe generates error models that are realistic in the
sense that they mimic errors that naturally happen in
production. Third, Phoebe is able to automatically conduct
exper iments to systemat ical ly assess the rel iabi l i ty of
applications with respect to system call invocation errors in
production.

175 B

Zhang, Long
KTH

SOFTWARE

