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Homology-based invariants can be used to characterize the geometry of datasets and thereby gain 
some understanding of the processes generating those datasets. In this work we investigate how the 
geometry of a dataset changes when it is subsampled in various ways. In our framework the dataset 
serves as a reference object; we then consider different points in the ambient space and endow them 
with a geometry defined in relation to the reference object, for instance by subsampling the dataset 
proportionally to the distance between its elements and the point under consideration. We illustrate 
how this process can be used to extract rich geometrical information, allowing for example to classify 
points coming from different data distributions.

Data, geometry and homology
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Data, geometry andhomology
Jens Agerberg, KTH

Math department, Math of data and AI
Joint work with Wojciech Chachólski and Ryan Ramanujam

Abstract

Homology-based invariants can be used to characterize the geometry of datasets and thereby gain some understanding of the processes
generating those datasets. In this work (under review) we investigate how the geometry of a dataset changes when it is subsampled
in various ways. In our framework the dataset serves as a reference object; we then consider different points in the ambient space
and endow them with a geometry defined in relation to the reference object, for instance by subsampling the dataset proportionally
to the distance between its elements and the point under consideration. We illustrate how this process can be used to extract rich
geometrical information, allowing for example to classify points coming from different data distributions.

Methods

Persistent homology: from point clouds to persistence modules
From a point cloud we can construct a Vietoris-Rips complex, a combi-
natorial object encoding its geometry, parametrized by ϵ ∈ [0,∞).

By taking homology we get (for each homological degree) a vector space
for each ϵ and a linear map for each τ ≤ ϵ ∈ [0,∞). These linear maps
are called persistence modules and are the output of persistent homology.

Metrics and machine learning: from persistence modules to stable
ranks
Persistence modules can be seen as a summary of geometrical aspects of
the point cloud. To be useful we need metrics to compare them and ways
to develop machine learning algorithms on them.
For this we use the framework of stable rank: persistence modules have
a discrete invariant called rank, this invariant can be stabilized by con-
sidering instead the minimum rank in a growing neighborhood of the
module, leading to a type of homology-based invariant in the form of a
non-increasing piecewise constant function. Since this function space is
a Hilbert space one can consider a kernel based on stable rank [1] for use
in machine learning.

From global to local
Homology-based invariants are often used to characterize global aspects
of a dataset. In this work, we instead investigate whether they can be
useful in describing a single point in the ambient space, by subsampling a
dataset (called reference object) according to the distance of its members
to the point:

1. Choose a reference object: a finite subset R ⊂ RN and a point p ∈ RN .

2. Attach a probability distribution to R. We are interested here in dis-
tributions that attach high probability to points r ∈ R which have low
distance to p and low probability to more remote points.

3. Sample s points from the reference object according to the probabil-
ity distribution. Repeat n times and each time compute persistence
modules and stable ranks.

4. Average the stable ranks to get a descriptor characterizing the point p.

Selected Results

We start with data consisting of random points on the plane. For each
point, the reference object (the green points, sampled from a circle) is
sampled relative to its distance to the point, Persistent homology and
stable ranks are computed. The stable ranks clearly group into orange
(for points inside the circle) and blue (outside the circle), indicating that
interesting geometric properties can be found.

We now use as reference object the MNIST dataset for digit 1. We select
two points from the ambient space, R784: the origin and the center of
mass of the reference object. Using dimensionality reduction, we can
illustrate what it means to sample the reference object relative to those
2 points. Now the stable ranks resulting from the sampling allow to
distinguish the 2 points, for all homological degrees.

We now use as reference object the union of MNIST training sets for digit
1 and 7. We select out-of-sample 1:s and 7:s and represent them by their
stable rank, obtained by sampling the reference object in the same way as
before. In many cases, the geometry of the reference object close to the
out-of-sample digits allow to distinguish them. This is further quantified
by training an SVM classifier based on the stable rank kernel (in a semi-
supervised learning setup: the reference object is used in an unlabeled
fashion and the SVM is only trained on 10 samples from each class).

Interestingly, to distinguish a pair of digits, one can also use other digits
as reference object. Here 2:s and 3:s are used as reference object to
distinguish 1:s and 7:s.

References
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G-equivariant convolutional neural networks (GCNNs) is a geometric deep learning model that uses 
global symmetry to improve learning. Most GCNNs use convolutional layers to transform data in a 
translation equivariant manner, like the sliding kernels of CNNs but generalized to other symmetri-
es, e.g. rotation-equivariant transformations of spherical data. We analyze GCNNs and classify those 
G-equivariant layers that are expressible as convolutional layers. That is, we characterize the expressi-
vity of convolutional layers.

Homogeneous vector bundles and G-equivariant convolutional  
neural networks

Aronsson, Jimmy
Chalmers
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Equivariant Neural Networks
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We extend convolutional neural networks (CNNs) to provide rotation equivariance. We evaluate on 
the oral cancer dataset to diagnose malignant cancer, using the VGG16 classifier architecture. We 
also evaluate on the BBB038 dataset of highly varied cell nuclei, this time using the U-net architectu-
re combined with a discriminative loss function for semantic instance segmentation. We expect that 
incorporating rotation equivariance into CNNs will increase the expressive capacity without increa-
sing the number of parameters, reducing overfitting. Also, since data augmentation can be reduced, 
misclassification due to interpolation artifacts should decrease. The results indicate that this holds 
for the classifier network, but more experiments are needed to verify this for the semantic instance 
segmentation network.

Robust learning of geometric equivariances

Bengtsson Bernander, Karl
Uppsala University
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We plan to train the instance segmentation network for hundreds of 
more epochs to verify the hypothesis. That is, that ordinary CNN 
architectures, combined with data augmentation of multiples of 
rotations of 90 degrees, can be replaced with networks that are 
equivariant by design to those same transformations. We also plan 
to use another clustering method than K-means, preferably one 
without a predetermined number of clusters. 
 
Both the instance segmentation  network and the classifier  
networks can be tested on other datasets, and with other symmetry 
groups. 
 
For larger datasets, moving to distributed training over multiple 
GPUs show promise for speeding up the training phase. Moving to a 
cloud computational environment could also allow for more flexibility, 
with the drawback that you lose some control over your own 
development environment. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

We extend convolutional neural networks (CNNs) to provide rotation equivariance. We evaluate on the oral cancer dataset to diagnose malignant 
cancer, using the VGG16 classifier architecture. We also evaluate on the BBB038 dataset of highly varied cell nuclei, this time using the U-net 
architecture combined with a discriminative loss function for semantic instance segmentation. We expect that incorporating rotation 
equivariance into CNNs will increase the expressive capacity without increasing the number of parameters, reducing overfitting. Also, since data 
augmentation can be reduced, misclassification due to interpolation artifacts should decrease. The results indicate that this holds for the 
classifier network, but more experiments are needed to verify this for the semantic instance segmentation network. 
 

Abstract 

Classification on the oral cancer dataset 

Further directions 

One feature of standard convolutional neural networks (CNNs) is translational invariance: the result of convolving an input with a filter and then 
shifting the output is identical to shifting the input and then applying the convolution. We are interested in other equivariances, such as rotations 
and scaling. Recent works on rotation equivariance in CNNs include: 
 
 
 
 
 

Microscopy images of cells in the oral cavity 

Microscopy image of cells  
from the oral cavity Rotational equivariance: filtering (Φ) an input , then rotating (Tg), gives the 

same result as filtering on the rotated input. 

1. T.S. Cohen, M. Welling. Group Equivariant Convolutional Networks. Proceedings of the International Conference on Machine Learning (ICML), 
2016 

2. Maurice Weiler and Gabriele Cesa. General E(2)-equivariant´steerable CNNs. In Advances in Neural Information Processing Systems, volume  
32. Curran Associates, Inc., 2019.  

3. Bert De Brabandere, Davy Neven, and Luc Van Gool.Semantic instance segmentation with a discriminative loss´function. In IEEE/CVF 
Conference on Computer Vision and Pattern Recognition Workshops (CVPRW 2017), 2017. 
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We further modify the U-net architecture with a discriminative loss function [3] to 
be equivariant to rotations of multiples of 90 degrees. The methods yield a DICE 
score of about 0.7 for both versions of the U-net. 
 
Instance segmentation on the modified BBBC038 dataset. The  left image 
shows the input image, the middle one the results from the baseline U-net 
architecture, and the right one the results from the U-net architecture 
modified to be equivariant to rotations of multiples of 90 degrees. 
 
 
 
 
 
 
 
 
 
 
        
 
 
 

Semantic Instance Segmentation 

•   Group-equivariant convolutional networks (G-CNNs) [1], using  
    group-convolutions. 
 
•  General E(2)-Equivariant Steerable CNNs [2], available  
    as a library in Pytorch. 
 
 
 
 
 

The oral cancer dataset. We modified 
the VGG16 classifier to use group-
equivariant convolutions on the p4 
group, consisting of translations and 
rotations of multiples of 90 degrees. 
 
The baseline CNN version combined 
with data augmentation of rotations of 
multiples of 90 degrees yield an 
accuracy score of around 56 %. The 
equivariant version , without data 
augmentation,  yields 60 %. The latter  
architecture is less sensitive to 
overrfitting. 
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Machine learning (ML) models have the potential to enhance products. It is a type of Artificial Intelli-
gence (AI) that allows software applications to predict outcomes.
Data-driven models built using ML have proven their usefulness. Nevertheless, ML algorithms do not 
explain their predictions, which is a barrier to ML adoption. To address this issue, the researcher uses 
eXplainable Artificial Intelligence (XAI). XAI explains why a ML model yields a predicted output for a 
certain input.
Understanding why a model makes a prediction is important, but it is not enough. So, other principles 
need to be addressed for ML deployment in the real world. In the current work, privacy is one of the 
challenges that is discussed. 
We studied the effect of data privacy techniques\textsuperscript{[1]} on SHapley Additive exPlana-
tions (SHAP)\textsuperscript{[2]}. 
By applying SHAP the output of any ML model can be explained. The output model is interpretable. 
Our aim is to understand how data protection affects the measures related to explainability. Hence, we 
performed a series of experiments comparing the effects of data masking procedures on the explaina-
bility of models according to SHAP on the data set.

The Interpretable Protected Machine Learning Model with Privacy

Bozorgpanah, Aso
Doctoral student, Department of Computing Science
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The InterpretableProtectedMachine
LearningModelwithPrivacy

Aso Bozorgpanah, Ph.D., Umeå University
Dept. Computing Science, NAUSICA: PrivAcy-AWare traNSparent deCIsions group

Supervisors: Prof. Vicenç Torra (Umu), Associate professor. Lili Jiang (Umu)

Motivation & Research Goals

Machine learning (ML) models have the potential to enhance products. It is a type of Artificial Intelligence (AI) that allows software applications to predict
outcomes. Data-driven models built using ML have proven their usefulness. Nevertheless, ML algorithms do not explain their predictions, which is a barrier
to ML adoption. To address this issue, the researcher uses eXplainable Artificial Intelligence (XAI). XAI explains why a ML model yields a predicted output
for a certain input. Understanding why a model makes a prediction is important, but it is not enough. So, other principles need to be addressed for ML
deployment in the real world. In the current work, privacy is one of the challenges that is discussed. We studied the effect of data privacy techniques[1] on
SHapley Additive exPlanations (SHAP)[2]. By applying SHAP the output of any ML model can be explained. The output model is interpretable. Our aim
is to understand how data protection affects the measures related to explainability. Hence, we performed a series of experiments comparing the effects of
data masking procedures on the explainability of models according to SHAP on the data set.

Methods

An implications’ analysis of applying data privacy techniques to explain-
ability was performed. It is claimed[3] privacy and explainability are incom-
patible. While we designed an explainable model along with privacy. In
this regard, Maximum Distance to Average Vector (MDAV) was applied
for achieving microaggregation. The MDAV is a masking method that
provides k-anonymity to protect data[4]. Microaggregation is one of the
most efficient approaches in relation to the trade-off risk-utility. It consists
of building small clusters with the original data and then replacing each of
the data with a cluster center that is representative of the whole cluster.
Microaggregation is flexible and permits implementing k-anonymity for
any kind of data. We supposed k = [1, 15]. Although the range of k is
different for various datasets, the k value should be selected in a reason-
able range to have high accuracy. After masking the dataset by MDAV.
SHapley Additive exPlanations (SHAP) was done on the masked dataset.
SHAP[2] is a method to explain individual predictions. It is based on the
Shapley Value of game theory. TreeSHAP is an estimation approach of
SHAP that was used. TreeSHAP defines the value function in terms of
the conditional expectation to estimate effects instead of the marginal
expectation.

As the above progress is shown, we present a privacy-preserving ex-
plainable ML model. The explainable machine learning algorithms
were applied to the protected data to train machine learning mod-
els and explain the result of their predictions. They were compared
with the one obtained without masking.

Selected Results

A baseline model was trained on the original dataset, then, additional
models were trained on the masked datasets. The explainable models
were not changed even after protecting data for k = [1, 12]. The results
showed that explainability for the protected model by MDAV was similar
to the one obtained with the original data. Therefore, decisions on the
amount of distortion to achieve protection through microaggregation and
k-anonymity should be led by the desired trade-off between disclosure risk
and model accuracy.
We presented an approach, what kind of data privacy methods are more
feasible to explainability after applying SHAP to make an explainable
ML model. The ML models trained on masked data were evaluated by
their results explainability. We considered feature importance analysis of
the final models (based on decision trees) using SHAP. Our approach
were applied on ’USA Housing’ dataset, and the results were compared
between the results for the original and the masked data. The results
for k = [3, 6, 11] are shown in (b), (c), and (d) respectively in the below
figure. It is clear that the extracted explainability are similar among all
four models.

We found that interpretability using SHAP is studied for k-anonymous
data. The results showed that qualitative properties of attributes were
maintained for masked data. Then, the decision on which level of privacy
and the amount of distortion was appropriate needs to focus on the risk-
utility trade-off. For instance, a user needs to take into account both the
value of k and the utility of the masked data set.

The explainable ML models can be consid-
ered along with privacy. We found that how
explainability can be affected by data pri-
vacy methods and masking methods keep
utility. Future research should seek to
address other XAI requirements within a
privacy-preserving framework to assess to
what extent these tools apply in privacy-by-
design Ml.
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The study of generalization is one of the cornerstones of machine learning theory. Tight generalization 
bounds are potential tools for guaranteeing adequate performance and the PAC-Bayes framework 
has proven useful in deriving such bounds when good model priors are known and test cases match 
training cases in distribution.
However, in real world tasks, where deep neural networks are the models of choice and training and 
test cases come from different domains,  deriving tight and estimable bounds remains an unresolved 
challenge. 
In our work, we combine recent advances in PAC-Bayes domain adaptation with data-dependent 
priors to give estimable and informative bounds for problems where classical bounds are vacuous. We 
apply this method to a domain adaptation image classification task and find that it produces tighter 
bounds. We study which terms dominate the bounds and identify possible directions for further im-
provement.

Data dependent bounds for domain adaptation

Breitholtz, Adam
Chalmers
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DataDependentPriors forDomain
AdaptationBounds

Adam Breitholtz, PhD, Chalmers University of Technology
Dept. Computer Science and Engineering, Data Science and AI division

Supervisors: Ass.Prof. Fredrik D. Johansson (CTH) and Prof. Devdatt Dubhashi (CTH)

Motivation & Research Goals

The study of generalization is a cornerstone of machine learning theory. Our understanding of how generalization functions is crucial
to confidently engineer and deploy models in high stakes, real world domains, such as healthcare. Tight generalization bounds are
potential tools for guaranteeing adequate performance and the PAC-Bayes framework has proven useful in deriving such bounds
when good model priors are known and test cases match training cases in distribution.

However, in real world tasks, where deep neural networks are the models of choice and training and test cases come from
different domains, deriving tight and estimable bounds remains an unresolved challenge. Recent work has shown that using data
dependent priors is a promising way to achieve tighter bounds for deep neural networks in stationary domains. In this work, we
combine recent advances in PAC-Bayes domain adaptation with data-dependent priors to give estimable and informative bounds for
problems where classical bounds are vacuous. We apply this method to a domain adaptation image classification task and find that
it produces tighter bounds. We study which terms dominate the bounds and identify possible directions for further improvement.

Methods

We apply data dependent priors1 on two bounds from the literature2 for a
domain adaptation image classification task. We seek to understand how
the addition of data dependent priors affects the sample generalization
part of the bound. Further, it is of interest to find if any specific part of
the bounds dominates and in which range it does so. Moreover, we also
want to investigate if the dominating terms change as the training of the
model progresses. I.e., we evaluate the bound at several different points
during the training of the model, as the KL term is expected to increase
increase as the posterior drifts away from the prior.

Theorem 1 (Additive bound). For any real numbers ω, α > 0 we have
with probability at least 1 − δ over the random choice of S × Tx ∼
(S × TX)m; for every posterior ρ on H

E
h∼ρ

RT (h) ≤ E
h∼ρ

ω′R̂S(h) + α′ 1

2
D̂isρ(S, Tx)

+
(ω′

ω
+

α′

α

)KL(ρ‖π) + log 3
δ

m
+ λρ +

1

2
(α′ − 1),

where D̂isρ(S, Tx) = |d̂Tx − d̂Sx | is the empirical domain disagreement,
λρ = |eT (ρ)− eS(ρ)| and ω′ = ω

1−e−ω and α′ = 2α
1−e−2α .

Theorem 2 (Multiplicative bound). For any real numbers a, b > 0 we
have with probability at least 1 − δ over the choices S ∼ (S)m and
Tx ∼ (Tx)n

E
h∼ρ

RT (h) ≤ a′
1

2
d̂Tx

+ b′β∞(T ‖S)êS + ηT \S

+ (
a′

na
+

b′β∞(T ‖S)
mb

)
(
2KL(ρ‖π) + ln

2

δ

)

where a′ = a
1−e−a , b′ = b

1−e−b ,

β∞(T ‖S) = sup
(x,y)∼supp(S)

T (x, y)

S(x, y)

and
ηT \S = Pr

(x,y)∼T

(
(x, y) /∈ supp(S)

)
sup
h∈H

RT \S(h).

Selected Results
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The two bounds are evaluated on the learning task described earlier. In
the center and rightmost figures, corresponding to the additive and

multiplicative bound respectively, we show the contribution of different
terms in the bounds. The labels refer to the term in the bound including

any multiplicative constants.
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The same type of figure as the one above, however, here we have used
30% of the source data to inform the prior. We see that the bounds are

no longer vacuous and that when the KL divergence is small the
unobservable λρ term is a significant part of the additive bound. The
shaded area around source and target error represents one standard

deviation.

References

[1]
On the role of data in PAC-Bayes bounds
Dziugaite, G. K.; Hsu, K.; Gharbieh, W.; Arpino, G.; andRoy, D. M.
In Proceedings of the 24th International Conference on Artificial Intelligence and
Statistics (AISTATS)

[2]
PAC-Bayes and Domain Adaptation
Germain, P.; Habrard, A.; Laviolette, F.; and Morvant, E
Neurocomputing, 2020

5 B

Breitholtz, Adam
Chalmers

AI MATH



6 APage

In this work the main goal is to approximate the optimal nonlinear filter of an underlying high dimen-
sional process through deep learning. This work utilise the deep splitting method, developed for the 
approximation of solutions to (stochastic) partial differential equations. We solve the Zakai equation, 
which in turn solves the filtering problem, with an energy-based model. Taking the observations as 
input, a computationally fast filter is obtained. The model is employed on a nonlinear bistable problem 
and shows promising performance. The bootstrap particle filter is used for comparison.

Energy-based approach for the nonlinear filtering problem using 
a deep splitting method

Bågmark, Kasper
Chalmers

AI MATH
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Kasper Bågmark, PhD student
Department of Mathematical Sciences

Supervisors: Adam Andersson (Chalmers and SAAB), Stig Larsson (Chalmers)

1. The optimal filtering problem

Consider a system of stochastic differential equations (SDE)
(X,Y) given by

Xt = X0 +

∫ t

0

µ(Xs) ds+

∫ t

0

σ(Xs) dWs, (1)

Yt =

∫ t

0

h(Xs) ds+ Vt, (2)

where X is called the underlying (unobserved) state pro-
cess in L2(Ω;Rd) and Y is the observation process in
L2(Ω;Rd). W and V are two independent Rd-valued Brow-
nian motions. The optimal filtering problem consists of find-
ing the probability density of the state given the observation,
p
(
Xt| (Ys)0≤s≤t

)
. This is called the filtering density.

2. The Zakai equation

The unnormalized version of the filtering density pt :=
p
(
Xt| (Ys)0≤s≤t

)
can be shown to satisfy the stochastic partial

differential equation (SPDE) known as the Zakai equation.
The strong form of the Zakai equation reads

pt = p0 +

∫ t

0

Ap ds+

∫ t

0

psh
⊤ dYs, (3)

where A is the second order operator from the Kolmogorov
forward equation related to X, and Y is the observed process.
By substitution, the second integral contains an Ito integral.

3. Methods

Deep splitting method: In [1] a splitting method for SPDE, in-
cluding (3), is introduced. The splitting method is based on solv-
ing the linear part of the equation analytically via a Feynman–Kac
formula, and adding the nonlinearity in a second step. The scheme
is formulated as a recursive (in time) nonlinear least squares prob-
lem. The recursion reads

pt =arg min
u∈C(Rd,R)

E
∣∣u(XT−tn+1

)− (ptn(XT−tn)

+ f(XT−tn , ptn(XT−tn), (∇ptn)(YT−tn),∆t,∆Y ))|2.
(4)

Here f is short-notation for the Euler–Maruyama or Milstein
schemes for (3). In [1] u is approximated with a deep neural
network for every realization of Y . We consider a more general
framework where we let the model take the observation sequence
as input.

Energy-based approach: In probabilistic model learning, one
successful technique in density estimation and maximum likeli-
hood estimation is the use of energy-based methods (EBM) [2].
The idea is to approximate p(x|y) by associating an scalar en-
ergy fθ to each pair of (x, y) where in our setting x := Xtn and
y := Yt1:tn . The model is trained to associate high energies to
pairs that are unlikely and low energy to values that are likely. In
our setting we use the unnormalized parametric model

p̂t(x|y) := e−fθ(x,y), (5)

where θ denotes the parameters of our energy-based model.

4. Numerical Results

Our proposed method is to combine the energy-based approach with
the deep splitting method. We demonstrate the method on a nonlinear
bistable problem.

Example. Consider a process (X,Y ) satisfying (1) and (2) with nonlinear
drift µ(x) = 5x− x3, constant diffusion σ(x) = 1 and linear observation
h(x) = x with initial density p0 = N (0, 1). Below we see the underlying
density of the state at time T = 0.5.

�" �2 �1 0 1 2 "

0.0

0.1

0.2

0."

0.4

0.5

0.6

We compare the result from our approximation to the bootstrap particle
filter by measuring the distance from the true state Xt to the mean of
our method and the bootstrap particle filter (PF), respectively. Formally
this is the L1(Ω;Rd)-norm

E∥Xtn − E [Xtn |Yt1:tn ]∥ and E∥Xtn − µ̂tn∥

for n = 1, . . . , 25, where E [Xt|Yt1:tn ] is approximated by the particle
filter and µ̂tn is the estimated mean from our method.
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When constructing a convolutional network for image analysis one cannot truly escape the risk that 
real world data will not respect the the orientation of data the model was trained on. For example, 
satellite images have, by their nature, no preferred orientation. How can one deal with this problem 
in an easy way? One solution is to use explicitly equivariant convolutions. This poster discusses some 
points for why the equivariant convolutions are needed and discusses an implementation made by 
Cohen et al. in 2016 as well as presents a visualisation of its effect on a network. It also discusses some 
parts of the mathematical structure as well as current and future work.

Geometric Deep Learning and Equivariant Neural Networks

Carlsson, Oscar
Chalmers
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Use the symmetries
in your problems to your
advantage.

R(x)
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Geometric Deep Learning and Equivariant
Neural Networks

Oscar Carlsson†� Daniel Persson† Jimmy Aronsson†� Fredrik Ohlsson•

Jan Gerken† Christoffer Petersson� Hampus Linander�

(Affiliations †: Chalmers Univerity of Technology, Department of Mathematical Sciences. �: WASP. •: Umeå
University, Department of Mathematics and Mathematical Statistics. �: Zenseact.)

Intro
How does one deal with rotations? Options are:

You don’t, you assume all your data will have
your prefered orientation. (Dangerous: real
life throws curveballs at your models)

Make sure that all your data has the right ori-
entation. (A lot of work, either manually or
making an algorithm to unrotate data)

Augement training data so that everything is
represented. (Every orientation becomes a lot
of data to deal with)

Modify your architecture and layers to deal
with the rotation automatically. (The easy
way.)

(Bullet image source: “rotation” by Adrien Coquet from the Noun Project)

One way: transform kernels [Cohen and Welling 2016]

r r
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max
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Example: Magnitude of classification invariance for four fold rotation symmetry
applied to single MNIST digit
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Some mathematics
A map Φ is equivariant with respect to a transfor-
mation T of the data if it doesn’t matter if one
transforms the data before or after one applies
the map Φ:

Φ ◦ T = T ◦ Φ. (1)

An example is that normal convolutions are
equivariant to translation. One can extend this
to a larger equivariance if we allow convolution
kernels and data to be functions on a group:

[Ψ � f ](g) =
∫

G
Ψ(g−1g′)f(g′) dg′. (2)

This is equivariant if the kernel transforms in a
special way under the group action:

Ψ(hgh′) = ρ2(h)Ψ(g)ρ1(h′). (3)

[Cohen and Welling 2016] discretise this to allow
for easy computation, see figure on the left.

This can be generalised to local transforma-
tions by taking a viewpoint of local coordinates
changes. Equivariant convolutions in this general
context was introduced by [Cheng et al. 2019]
without much mathematical details. We expand
on the details of this and provide some generali-
sation in our recent article [Gerken et al. 2021].

Current work
We’re currently examining the details of how im-
posed equivariance affects semantic segmenta-
tion and how it compares to data augmentation.

References
Cheng, Miranda C. N. et al. (June 6, 2019). Co-

variance in Physics and Convolutional Neu-
ral Networks. arXiv: 1906.02481 [hep-th,
stat]. url: http : / / arxiv . org / abs /
1906.02481 (visited on 01/27/2020).

Cohen, Taco S. and Max Welling (June 3,
2016). Group Equivariant Convolutional Net-
works. arXiv: 1602 . 07576 [cs, stat].
url: http://arxiv.org/abs/1602.07576
(visited on 11/07/2019).

Gerken, Jan E. et al. (May 28, 2021). Geometric
Deep Learning and Equivariant Neural Net-
works. arXiv: 2105.13926 [hep-th]. url:
http://arxiv.org/abs/2105.13926 (vis-
ited on 05/31/2021).

← Download [Gerken, Jan E. et al.
2021]
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Modern learning machines, such as deep neural networks, are often over-parametrized and tuned 
to perfectly interpolate the training data. Recent works have shown that first-order methods could 
converge fast in non-convex optimization problems such as overparameterized neural networks, satis-
fying certain interpolation conditions (e.g., zero training loss). We seek to investigate and understand 
the convergence of first-order methods in non-convex optimization problems with deterministic or 
stochastic constraints.

Solving stochastic/deterministic constrained optimization problems 
in statistical learning.

Dadras, Ali
Umeå university
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Solving stochastic/deterministic constrained 
optimization problems in statistical learning

Ali Dadras, Umeå University
Department of Mathematics and Mathematical Statistics

Modern learning machines, such as deep neural networks, are often over-parametrized and tuned to perfectly interpolate the training 
data. Recent works have shown that first-order methods could converge fast in non-convex optimization problems such as 
overparameterized neural networks, satisfying certain interpolation conditions (e.g., zero training loss). We seek to investigate and 
understand the convergence of first-order methods in non-convex optimization problems with deterministic or stochastic constraints.

Problem Statement

References
1. Meng, Si Yi, et al. "Fast and furious convergence: Stochastic second 

order methods under interpolation." International Conference on 
Artificial Intelligence and Statistics. PMLR, 2020.

2. Loizou, Nicolas, et al. "Stochastic polyak step-size for SGD: An 
adaptive learning rate for fast convergence." arXiv preprint 
arXiv:2002.10542 (2020).

3. Vaswani, Sharan, et al. "Adaptive Gradient Methods Converge 
Faster with Over-Parameterization (and you can do a line-search)." 
arXiv preprint arXiv:2006.06835 (2020).

Abstract 

▪ Investigating the potential of first-order methods in 
optimizing non-convex optimization problems with 
deterministic or stochastic constraints.

▪ Investigating the existence of first order methods for solving 
constrained optimization problems motivated by learning 
problems.

▪ Investigating and understanding the convergence of desired 
first order methods.

Objectives
Let{𝑥𝑥𝑖𝑖}𝑖𝑖=1𝑛𝑛 be a given training set, and let {𝑦𝑦𝑖𝑖}𝑖𝑖=1𝑛𝑛 be training 
labels. We would like to minimize 

min
𝜃𝜃∈𝐷𝐷

𝑓𝑓(𝜃𝜃) =෍
𝑖𝑖=1

𝑛𝑛

𝑓𝑓𝑖𝑖(𝜃𝜃; 𝑥𝑥𝑖𝑖, 𝑦𝑦𝑖𝑖)

where 𝜃𝜃 is the model parameter and 𝐷𝐷 is a set of stochastic or 
deterministic constraints . 

.

Methods

Considering deterministic constraints, a vast number of studies 
have been done to solve the above optimization problem. There 
are different solving strategies, many of them rely on gradient 
descent and its variants. To improve these gradient-based 
methods, different strategies are proposed.

• Preconditioning (e.g.,data normalization, layer and batch 
normalization)

• Mmomentum (e.g., Polyak and Nestrov)
• Variance reduction (e.g., SAG, SDCA, SVRG)
• Adaptive stepsizes (e.g., Adagrad, ADAM)
• Importance sampling
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Discrete hierarchical models are statistical models that are widely used throughout statistics and data 
science. An advantage of these models is that there are established methods that can be used to make 
inference.
The goal of this project is to explore at a deeper level the combinatorial objects arising from discrete 
decomposable models beyond their graph. Specifically, we aim to answer when enumerative proper-
ties, such as the Gorenstein property, hold for the polytope associated to a discrete decomposable 
model.

Gorenstein discrete decomposable models

Deligeorgaki, Danai
KTH
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Gorensteindiscretedecomposablemodels
Danai Deligeorgaki, Department of Mathematics (KTH)

Supervisor: Liam Solus (KTH)

Introduction

We study discrete decomposable models, a family of statistical models that lie in the class of hierarchical models. Decomposable
models and their corresponding graphs are of wide use throughout statistics and data science. For instance, directed acyclic
graphs (DAGs) can be approximated by decomposable graphs. The complexity of this approximation determines the complexity of
probabilistic inference algorithms for DAG models such as variable elimination. Therefore, the combinatorics of the graphs defining
the decomposable models carry important information in regard to probabilistic inference. The goal of this project is to explore
at a deeper level the information encoded in combinatorial objects associated to decomposable models.

Definition
A decomposable simplicial complex Γ is a collection of simplices, i.e.
nodes, edges, triangles, tetrahedra, etc., that are glued together (in a certain
way). The simplices in Γ are called faces and the (non-trivial) inclusion-
maximal faces are called facets.
For example, the graph on the right denotes a decomposable simplicial com-
plex on 9 nodes. The edge {1,2}, the triangle {2,3,4} and the node {7} are
some of its facets.

decomposable simplicial complex

2

3

1 4

5

6

7 8 9

Discrete decomposable models

Let r1, ..., rm ∈ N be the number outcomes of the discrete variables
X1, X2, ..., Xm, respectively, and let R = r1 × · · · × rm be the set of
all possible outcomes. The joint distribution of X1, ..., Xm lies in the
(#R− 1)-dimensional probability simplex

∆#R−1 = {p ∈ R#R : pi ≥ 0, for all i ∈ R and
∑
i∈R

pi = 1}.

The decomposable model associated with a decomposable simplicial
complex Γ is

MΓ = {p ∈ ∆#R−1 : pi =
1

Z(θ)

∏
F∈facet(Γ)

θ
(F )
iF

for all i ∈ R},

for θ(F )
iF

positive parameters and Z(θ) normalizing constant.

From the model to the polytope

Apart from the graph Γ, there are other combinatorial objects linked to a
decomposable model MΓ. In fact, MΓ can be written as the intersection
of a toric variety VMΓ

with the probability simplex ∆#R−1.

For example, for #R = 3,

MΓ = VMΓ ∩∆2

∆2

MΓ

From the toric variety, which is an algebro-geometric object, we can pass
to a polytope PMΓ

, a geometric object. It is a property of toric varieties
that the geometric properties of VMΓ

are encoded in the polytope PMΓ
.

MΓ

↷
PMΓ

In this project, we are investigating the structure of this polytope to see
if it carries useful information in relation to probabilistic inference.

Getting to know the polytope

When investigating a polytope’s combinatorics, there are several questions
to be explored, such as
• What are the facets of the polytope PMΓ

? Answered in [1].

The facets are given by xF
iF

≥ 0 for F ∈ facets(Γ) and iF ∈ RF .

• Does PMΓ admit a regular unimodular triangulation? Answered in [2].

Yes!

What combinatorial information does this triangulation carry? Open.
• What are the enumerative properties of PMΓ

? Our results.

To this end, we study the structure of an integer polynomial associated
to PMΓ , called the h∗-polynomial,

h∗(x) = h∗
0 + h∗

1x+ · · ·+ h∗
#R−1x

#R−1.

This polynomial captures important information about the polytope, in-
cluding its volume and whether or not the polytope PMΓ , and hence the
model MΓ, has the Gorenstein property. In fact, the decomposable model
MΓ is Gorenstein if and only if h∗(x) is palindromic.
We characterize all Gorenstein discrete decomposable binary models for
forests Γ.

Theorem 1
Let Γ be a forest on m nodes and
X1, ..., Xm be binary variables.
Then MΓ is Gorenstein if and only if all
connected components of Γ have

exactly one vertex,

strictly more than one vertex.

Gorenstein examples
Γ1

. . . . .
Γ2

.

.

.
. .

.
. .. . .

.

.
.
.

References
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Markov bases of binary graph models
M. Develin, S. Sullivant
Annals of Combinatorics 7, 2003
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Gröbner bases and polyhedral geometry of reducible and cyclic
models
S. Hoşten, S. Sullivant
Journal of Combinatorial Theory, Series A 100.2, 2002

Future work

We will continue exploring the combinatorial properties of discrete de-
composable models, and their interpretation in terms of statistics. Our
current goals are to

1. Interpret the observations in Theorem 1 statistically.

2. Generalize Theorem 1 to characterize all discrete decomposable models.
We already have a conjecture in this direction.

3. Analyze the information that the triangulation constructed in [2] carries.
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Neuroscientists are working hard to map and understand the intricate connections of neurons in a 
brain. What will the knowledge of that structure give us? Using which mathematical framework can 
we in a useful yet practical way describe the (supposed) link between the structure of a network and 
the tasks it can perform? To find a rigorous answer, we study the impact that different structures and 
dynamics can have on networks. The aim is to combine pure mathematics and neuroscience, using 
methods from statistical physics, combinatorics, geometry, percolation and probability theory.
    Even endowing a simple structure with simple dynamics can yield surprisingly intricate results. We 
now study emerging structures in the Hopfield model as well as cellular automata containing inhibi-
tory and excitatory ‘neurons’. The latter can be thought of as a generalisation of bootstrap percolation 
with highly non-monotone behaviour!

Deducing function from structure

Ekström, Henrik
Lund University
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Neuronal networks: 
connecting structure 

and function

Henrik Ekström | Lund University | Matematisk statistik, Sölvegatan 18, 223 62 Lund | Henrik.Ekstrom@matstat.lu.se

Cellular Automata

Neuronal networks can be thought of as cellular automata: 
Small units with simple local dynamics giving rise to complex global phenomena.

In neural networks, some neurons are inhibitory, having a dampening effect. 
Combining this feature with CA gives an interesting class of complex dynamical 
systems with non-monotone behaviour. 

Searching for mathematics that can help us understand the functioning of the brain.

Constructing the original Hopfield model
Meta-input: 𝑀𝑀 ‘patterns’ 𝝃𝝃1, … , 𝝃𝝃𝑀𝑀, where 𝝃𝝃𝜇𝜇 ∈ −1,1 𝑁𝑁

Structure: Originally, a complete graph on 𝑁𝑁 vertices.

’Training’: Set the weight 𝑖𝑖 ↔ 𝑗𝑗 in the graph to 𝑊𝑊𝑖𝑖𝑖𝑖 =
1
𝑁𝑁σ𝜇𝜇=1

𝑀𝑀 𝜉𝜉𝑖𝑖
𝜇𝜇𝜉𝜉𝑗𝑗

𝜇𝜇.

States: The configuration 𝝈𝝈(𝑡𝑡) ∈ −1,1 𝑁𝑁 of ‘spins’ at time 𝑡𝑡, with dynamics

𝜎𝜎𝑖𝑖 𝑡𝑡 + 1 = sign ෍
𝑗𝑗=1

𝑁𝑁

𝜎𝜎𝑖𝑖 𝑡𝑡 𝑊𝑊𝑖𝑖𝑖𝑖 .

The Hopfield model (ideally) maps input states 𝝈𝝈(0) to the nearest pattern 
𝝃𝝃𝜇𝜇, which are by construction the minima of the Hopfield Hamiltonian:

𝐻𝐻𝑁𝑁 𝜎𝜎 = − ෍
𝑖𝑖,𝑗𝑗=1

𝑁𝑁

𝑊𝑊𝑖𝑖𝑖𝑖𝜎𝜎𝑖𝑖𝜎𝜎𝑗𝑗 .

(‘Spurious’ minima typically also appear.)

Dissecting the model
Some (even many) weights 𝑊𝑊𝑖𝑖𝑖𝑖 can become quite small and contribute little. Randomly 
removing weights has been shown to preserve pattern retrievability surprisingly well. 
What if we remove the smallest weights first?
• Study the structure of the remaining graph
• What is the connection between the data {𝜉𝜉𝜇𝜇} and the structure?
• Are certain graphs more ‘efficient’ than others, i.e. large 𝑀𝑀 but few non-zero 𝑊𝑊𝑖𝑖𝑖𝑖?
• Can the bounds of random dilution be improved with this method?

Classifying models
Impose a structure on the graph: cycle/tree/path with various degrees
• Study the minima of the energy function and retrievable patterns.
• What is the largest set of patterns?
• Are they ‘close’ by some metric?

Figure 5. A classical example of the Hopfield model 
mapping a noisy input state (left) to a fix state 
corresponding to a learned pattern (right). Each 
pixel represents the state of 𝜎𝜎𝑖𝑖 𝑡𝑡 , the weights are 
not shown.
(W.Kinzel)

The goal: relate the learned patterns with the model structure

1. Given a graph, can we predict what kind of patterns it can learn?
2. Find (unique?) minimal graph capable of learning given patterns.
3. Identify classes of patterns that are suited for classes of graphs.

Some regimes
Let all vertices within 0,1, … , 𝑛𝑛 2 independently be 
initially active, in 𝐴𝐴 0 , with probability 𝑝𝑝. 
Dense activation
- When 𝑝𝑝 is high, inhibitory vertices will quickly ‘shut 

down’ the activation.
- What remains is determined by the boundary 

between complete and incomplete activation.
- If 𝑝𝑝 is large enough, this leads to the sparse case.
Sparse activation
- A single active vertex spreads activation along a line as 

in the top of Figure 2.
- This locally repeats with period four.
- All 7 limiting cycles resulting from only two initially 

active vertices are shown in Figure [right,#]
- For low 𝑝𝑝 there are only pairwise interactions.
- The bottom pattern (‘T-junction’) is by far the most 

common interaction
- The dynamics (now monotone!) can be thought of as 

growing horizontal/vertical lines, and the limiting 
states as quadrangulations of space.

The model we study
- Consider ℤ2 where one in four vertices is inhibitory as 

in the figures.
- Each vertex is connected to its four nearest 

neighbours.
- Let 𝐴𝐴(𝑡𝑡 = 0) ⊂ 0,1, … , 𝑛𝑛 2 ⊂ ℤ2 be a set of ‘active’ 

vertices  (given 𝑛𝑛).
- Let each vertex in ℤ2 become active at time (𝑡𝑡 + 1) if, 

at time 𝑡𝑡,
|{adjacent }| > |{adjacent     }|

Question: How does the size of 𝐴𝐴(𝑡𝑡) ⊂ ℤ2 as t increases 
vary for different 𝐴𝐴(0)? If every vertex is active with 
probability 𝑝𝑝?
Answer: In a highly non-trivial way!
We simplify by considering the processes
‘B’ and ‘C’ separately (Figure 1), but we still only 
understand the behaviour in certain regimes. The ‘B’ 
case is elaborated here.

Limiting states and the set of initial states leading to them.
↕

‘Patterns’ and their ‘basins of attraction’. 

How many patterns are there and how are their basins 
distributed? This is a surprisingly involved question!

Figure 1. An initialisation of the model with active set 
𝐴𝐴0 and two evolution steps. Considering the subsets 
𝐵𝐵0, 𝐶𝐶0 separately yields the same total evolution.

Figure 4. The alternate view of 
the sparse case, now monotone 
increasing! Activation in original 
model is proportional to the total 
length of lines in guadrangulation.

Figure 3. Two different initial states that 
both lead to the same limit cycle

Figure 2. A representative state of 
evey possible limit cycle when there 
are two initially active vertices. All 
cycles have a period of four.

The Hopfield model for auto-associative memory
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Federated Learning is a promising framework for distributed learning when data is private and sen-
sitive, but not optimal when data is heterogeneous and non-IID. We propose a robust  approach to 
personalization in FL that adjusts to heterogeneous data and non-IID distributions using a Mixture 
Of Experts. We evaluated our method on three datasets representing different non-IID settings, and 
found that our proposed approach achieve superior performance with two of the datasets, and is  
robust in the third. Even though we tune our  algorithm and hyper-parameters in the IID setting, it 
still generalizes well in non-IID settings.

Adaptive Expert Models for Federated Learning
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Adaptive Expert Models 
for Federated Learning

Martin Isaksson, Edvin Listo Zec, 
Rickard Cöster, Daniel Gillblad,  
Sarunas Girdzijauskas 

Federated Learning [1] is a prom-
ising framework for distributed 
learning when data is private and 
sensitive, but not optimal when 
data is heterogeneous and  
non-IID. We propose a robust  
approach to personalization in 

FL that adjusts to heterogeneous 
data and non-IID distributions  
using a Mixture Of Experts. We 
evaluated our method on three 
datasets representing different 
non-IID settings, and found that 
our proposed approach achieve 

superior performance with two of 
the datasets, and is robust in the 
third. Even though we tune our  
algorithm and hyper-parameters 
in the IID setting, it still generalizes 
well in non-IID settings. 

References 

[1] B. McMahan, et al., “Communication-effi-
cient learning of deep networks from decen-
tralized data,” in AISTATS, 2017  
[2] Ghosh, A. et al. “An Efficient Framework 
for Clustered Federated Learning”,  
NeurIPS,  2020 
[3] Listo Zec, E. et al. “Federated learning 
using a mixture of experts”, ArXiv, 2020

Our contributions 

1.  We improve the clustering algorithm  
from [2] by weighing exploration and exploi-
tation to produce better cluster models;
2. We use said cluster models as expert mo-
dels, improving [3];
3. An extensive analysis of our approach with 
respect to different non-IID aspects that also 
considers the distribution of client  
performance.

A client has one local expert model and share expert cluster models with 
other clients. A gating model is used to weight the expert cluster models 
to produce a personalized inference.

x

fh

fl

+
f 0
g

f 1
g

Non-IID class sampling allows us 
to vary non-IID-ness. With  
p = 0.5, two classes make up half 
of the samples.

Data samples from 
the majority classes.

Local model and 
gating model are 
trained locally.

Federated models are trained collectively and 
used as expert models in the Mixture of Experts.

Final  
output.

Output weighted 
by learned weights.

ericsson.com/research
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Every discrete probability distribution corresponds to a point in the standard simplex. Given a model 
consisting of probability distributions and sample data, we want to find a candidate in the model that 
best explains the data. Studying the Wasserstein distance between probability distributions is one 
route to this. The approach we take is to use polyhedral geometry - in particular bisectors and bisec-
tion fans - to better understand the Wasserstein distance.

Polyhedral geometry of Wasserstein distances

Jal, Aryaman
KTH

AI MATH



Page

�
�������� ��
��
�� 
��������
��	 ���
�	���

Aryaman Jal Katharina Jochemko
Department of Mathematics, Royal Institute of Technology (KTH)

��	���	���

%���� 
��101�	��� ������1����� �� [n] = {1, 2, . . . , n} 2�����
���� �� 0 
���� µ ∈ ∆n−1 = {x ∈ Rn :
n∑

i=1

xi = 1, xi ≥ 0 ∀ i = 1, . . . , n}�

'���� 0 ����� 
���	 M = {µ1, . . . , µk} ⊆ ∆n−1 �� ���2���� 
��101�	��� ������1������ 0�� �0

	�� x1, . . . , xN ∈ [n]� �� �0�� �� ���

µi ∈ M ��0� 1��� ��
	0��� ��� �0

	��� -� ��		�� ��� 0

��02� �� . / 0�� ��� 
�	�����0	 ���
���� �� 
���
��� ��� -0���������

����0�2� 1������ ��� �

���20	 ������1����� 0�� ��� 
���	�

�������	��� ���	����

'���� 0 
����2 d �� [n]� ��� -0��������� ����0�2� �� ������ 1�

Wd(µ, ν) = ����(µ, ν) = min{α ∈ R≥0 : ν − µ ∈ αBd}

�����

Bd = 2���

{
1

dij
(ei − ej) : 1 ≤ i �= j ≤ n

}

�� 20		�� ��� -0��������� ���� 10		 ���� ���
�2� �� Wd� '����

x1, . . . , xN � ��� -0��������� ����0�2� ����
0��� ���0	�

min
i=1,...,k

Wd

(
1

N

N∑
j=1

δxj
, µi

)

�����	���

(� N = 2� ��� ��2����� 1����0�� �� ����� 1� ��� 1���2���

1��(µ, ν) = {x ∈ Rn : ����(µ, x) = ����(ν, x)} .

Proposition. [2] +�� 1���2��� 1��(µ, ν) �� 0 
�	�����0	 2�

	���

Remark.

 � *�	�����0	��� �� ��� 1���2���� �� ���� ��� 0		 ���
��

!� +�� 1���2��� 20� �0�� �����

�� �������� ���� &����� "�� +���

�0

��� �� 0�� ��	� �� µ 0�� ν 	�� �� 0 ��
��
	0�� 
0�0		�	 ��

0 �02�� �� Bd.



������� ��� �������	��� �����	���

&�����  ����� ��� 1���2��� �� ��� 
����� ���� ���
�2� �� ��� %�2	���0� ����0�2�� (� &������ ! 0�� "� ��� 1���2��� ��� Wd ��� n = 3
�
����2��� ���� �� 1⊥

� 0�� dij = 1� ��� 0		 i �= j� 0�� ��
�2����

Figure 1: Bisector w.r.t. Euclidean distance Figure 2: One-dimensional bisector w.r.t. Wd Figure 3: Two-dimensional bisector w.r.t. Wd

���	��� ���
�	�

&�� ����� ��0
� G = ([n], E)� ����� dij = 1 �� ij ∈ E 0�� ∞
���������� (� ���� 20��� Bd �� 0 ��

����2 ���� 
�	���
� �."/��

(� G �� 0 ����� ���� Wd ���0	� ��� 1����
 �
 �� 0� 0��� ��0���

���
0���� 0�� Bd �� 0���	� ���
��
��2 �� ��� 2�����
�	���
�

�n−1 = 2���{± ei : i ∈ [n− 1]} .

Proposition ()0	� )�2��
�� !�! ��. +�� 1���2���� �0� �� Wd

2�����
������ �� ��� 20�� �� d 1���� 0 ��0
��20	 
����2 �� 0

���� ��� �
 �� 0��� ��0�����
0����� ����2�� 1� ��� ��
��
	0��

0��0���
���

H =
n−1⋃
i=1

{xi = 0}
⋃

I⊆[n−1]

{∑
i∈I

xi =
∑
i∈Ic

xi

}

# ��
�	0�� 
��� ����	��� ����	� �0� �1�0���� �� ��� 20�� �� G
���0	 �� ��� 2�

	��� ��0
� Kn.

�����

 � (�������0���� ��� 2�
1��0����2� �� 1��(µ, ν) ���� 
����� ν.
+��� 	�0�� �� ��� 2��2�
� �� 0 1���2���� �0� ���� .!/��

!� $����
����� ��� ��
1�� �� 
0��
0	 2�		� �� 1��(µ, ν) 0� 0


�0���� �� 2�

	����� �� ��� ��2����� 1����0���

"� $����
����� ,������ ��0��0
� ���� ���
�2� �� -0���������

����0�2���

References
6�7 ������ 2���� -8	
���8
� '�� 0�
���8
� +�� 1��
	����� (� 8
� 3�
��
����� /��

����� 48���
����
 ����8
:� �� �
����
��
:� 	������ -��

8� �� 1�	9���: )�	�

���8���
� �� � ���$!!�$#��

6�7 )
�8��� *�� -������ 0� 8
� 18
���� *�� ���%� 2
���:8� 9���:��
� 8
� 3�
�
��

��8�
8	�� 8
5�� �
��
�
� 8
5��&�%�"���%!��

6�7 ,��8����8
�� '�� -�:��	��� .� 8
� 0�:�8��� 0�� ���%� '
���	���: 8���:�� ��

��		��
�: ���� ���������� 08���	8���8� "!���� ���#"��#$ �

12 B

Jal, Aryaman
KTH

AI MATH



13 APage

Residual neural networks can be interpreted as time discretizations of optimal control problems. This 
observation means that it is possible to use sub-Riemannian landmark matching, a method from the 
field of shape analysis, to study and understand ResNets. For instance, as demonstrated in the poster, 
the impact of regularization on the smoothness of transformations can be studied from a diffeomorp-
hic point of view. The connection between the ResNets and sub-Riemannian landmark matching de-
monstrates that it is possible to study and understand neural networks using shape analysis methods.

ResNets Understood as Sub-Riemannian Landmark Matching

Jansson, Erik
Chalmers

AI MATH
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ResNetsunderstoodasSub-RiemannianLandmark
matching

Erik Jansson, Chalmers and University of Gothenburg
Supervisors: Klas Modin (Chalmers and GU)

sub-Riemannian landmark matching

1. Problem: find a diffeomorphism,
determined by a vector field, warp-
ing initial landmarks x1, ..., xn on
a manifold M to targets c1, ..., cn
on a metric space N .

2. Idea: Consider only vector fields
parametrized by variables in
some Hilbert space U .

This is an optimal control problem.

min
u:[0,1]→U

m∑
i=1

d2N (h(yi(1), ci)) +

∫ 1

0

�(F (u))dt,

s.t. ẏi = F (u)(yi), t ∈ [0, 1], yi(0) = xi.

Note that F maps from controls to vector fields and
formally parametrizes the vector fields!

We derive an equaton of motion describing
the evolution of the controls.

A(u)u̇ = (DT
um ◦ L−1) ·

(
adTv m+ div(v)m

)

Lv = (1− α∆)kv = m

Connection with residual neural networks

Residual neural networks can be considered as time discretizations of
time-continuous control problems.

In some settings: ResNets discretize a high di-
mensional sub-Riemannian landmark matching
problem!

Interpretation 1: If we know the dynamics of the control, in-
creasing the number of layers does not increase the number of
parameters we need to optimize.
Interpretation 2: Shape analysis, a mathematically well un-
derstood subject, can be used to interpret neural networks, and
vice-versa.

Numerical example

We let U = R16 and set F (u) = X0 +
∑m

i=1 uiX
i for vector fields on R2/(2πZ)2 that diagonalizes

the Laplace-Beltrami operator. We generate 1000 points and classify those in a variable band of
width π as a 1 and those outside as a 0. We want to determine an initial value u(0) so that the
points are moved towards a uniform band.

We first try without regulariza-
tion. Note that the points are
moved very erratically. This is
not computationally stable.

We increase the regularity
sharply. Note that the resulting
warp is much smoother. This
transformation is more robust.
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We have explored splitting methods for solving large-scale optimal transport (OT) problems, which 
has resulted in an algorithm that combines speed and accuracy. Built on the celebrated Douglas- 
Rachford splitting technique, our method tackles the original OT problem directly instead of solving 
an approximate regularized problem, as many state-of-the-art techniques do. This allows us to provide 
sparse transport plans and avoid numerical issues of methods that use entropic regularization. Each 
iteration can be executed efficiently, in parallel, and the proposed method enjoys an iteration  
complexity O(1/ϵ) compared to the best-known O(1/ϵ2) of the Sinkhorn method. In addition, we 
establish a linear convergence rate for our formulation of the OT problem.

A splitting-based algorithm for faster and more accurate optimal transport

Lindbäck, Jacob
KTH

AI MATH
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A splitting-based algorithm for faster and
more accurate optimal transport

V. V. Mai, J. Lindbäck, M. Johansson
EECS KTH

Our Contributions

We propose a splitting algorithm for optimal transport, that achieves
better iteration complexity than the state-of-the-art while preserving
memory efficiency. Moreover, it:

• achieves high numerical stability,

• gives sparse solutions,

• is hyperparameter free,

• is readily parallelizable on multi-core CPU or GPU!

Some background

The Discrete Optimal Transport (D-OT) problem follows as:

minimize
X≥0

⟨C, X⟩

X1n = p, ,X⊤1m = q,

for some fixed cost matrix C. The decision variable X is an m×n ma-
trix (typically large). That, together with the dense constraints, render
standard LP solves, such as simplex or IP-methods, intractable for
larger OT problems.

For improved memory efficieny, the Sinkhorn method has been pro-
posed, which is the most popular OT-solver. It finds an approximate
solution to the D-OT, by replacing the non-negativity constraint by
adding an entropic regularization to the objective. That is, the ob-
jective is updated as follows:

⟨C, X⟩ → ⟨C, X⟩ − ηH(X)

where H(X) = −
∑

ij Xij log(Xij) is the Entropy function, which
promotes positivity. This approximate version of the D-OT prob-
lem, enables simple dual and primal variable updates, which finds
ϵ-accurate solutions in O(1/ϵ2) iterations. Moreover, the updates only
involve matrix-vector multiplies and element-wise arithmetic opera-
tions, which can easily be parallelized. Yet, a consequence of the
entropic regularization is that the solution will always be dense, and
it requires tuning. Moreover, it induces a trade-off between accuracy
and numerical stability.

The splitting method

It turns out that the celebrated Douglas-Rachford (DR) splitting
method gives rise to a fast algorithm in terms of iteration complexity,
while keeping the memory footprint low, without having to introduce
entropic regularization. This makes it both fast, accurate, and stale!
When applied to the D-OT problem, the DR-splitting algorithm reads:

Xk+1 = [Yk − ρC]+, Zk+1 = PX (2Xk − Yk), Yk+1 = Yk + Zk+1 −Xk+1.

where ρ is a stepsize, PX denotes the projection onto the set X , which
is given by:

X :=
{
X ∈ Rm×n

∣∣Xe = p and X⊤f = q
}
.

This projection admits a closed formula solution, that is linear,
and only involved matrix-vector multiplication and rank-one updates,
which are hence easy to parallelize. This can further be used to elim-
inate the Z and Y variable blocks completely, yielding the memory-
optimized algorithm:

Theoretical guarantees

We establish a sublinear rate O(1/ϵ) and a linear rate O(log 1/ϵ) for
our splitting method, both of which are indeed better than that of
Sinkhorn! Although the linear rate is asymptotically stronger than the
sublinear rate, we found in numerical experiments that the sublinear
rate typically dominates the first iterations.

Selected Results

We generated 300 random image pairs from MNIST and computed
how many times our splitting algorithm, as well as Sinkhorn using
different neutralizers, manage to find an optimal transportation
plan within different target accuracies. Note not our approach is
consistently more accurate and robust.
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Optimization problems play an important role in the process of learning a machine using previously 
available data. This process, can be time consuming and therefore many researchers have tried to re-
duce it through various techniques. One method to attack this problem is to reduce the optimization 
time of the learning process. As a result, accelerated methods in optimization gain a remarkable atten-
tion. Among the first order algorithms for smooth convex functions, Nesterov’s accelerated gradient 
descent(NAG) is proven to be the fastest. For decades, various studies tried to enlighten the essence 
of acceleration through Nesterov updates. Recently, using Ordinary Differential Equations(ODE), it 
is shown that for a fixed convergence rate, accelerated algorithms may not be unique. This research, 
proposes a general algorithm which can achieve various convergence rates for different choices of 
parameters.
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Accelerated Deterministic Methods in Optimization 
Hoomaan Maskan, Umeå University

Department of Mathematics and Mathematical Statistics
Main Advisor: Armin Eftekhari

Optimization problems play an important role in the process of learning a machine using previously available data. This process, can be time
consuming and therefore many researchers have tried to reduce it through various techniques. One method to attack this problem is to reduce the
optimization time of the learning process. As a result, accelerated methods in optimization gain a remarkable attention. Among the first order
algorithms for smooth convex functions, Nesterov’s accelerated gradient descent(NAG) is proven to be the fastest. For decades, various studies tried
to enlighten the essence of acceleration through Nesterov updates. Recently, using Ordinary Differential Equations(ODE), it is shown that for a fixed
convergence rate, accelerated algorithms may not be unique. This research, proposes a general algorithm which can achieve various convergence rates
for different choices of parameters.

Motivation and Methods
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Abstract

The ODE (1) can be generalized by replacing the coefficients with
positive parameters 𝑚𝑚𝑚𝑚,𝑛𝑛𝑛𝑛,𝑝𝑝𝑝𝑝, 𝑞𝑞𝑞𝑞

�𝝑̇𝝑𝝑𝝑 = −𝑚𝑚𝑚𝑚∇𝐹𝐹𝐹𝐹ℒ 𝝑𝝑𝝑𝝑 − 𝑛𝑛𝑛𝑛(𝝑𝝑𝝑𝝑 − 𝑉𝑉𝑉𝑉)
𝑉̇𝑉𝑉𝑉 = −𝑞𝑞𝑞𝑞 𝑉𝑉𝑉𝑉 − 𝝑𝝑𝝑𝝑 − 𝑝𝑝𝑝𝑝∇𝐹𝐹𝐹𝐹ℒ 𝝑𝝑𝝑𝝑

,

which can be rephrased as the ODE
𝝑̈𝝑𝝑𝝑 + ( 𝑛𝑛𝑛𝑛 + 𝑞𝑞𝑞𝑞 + 𝑚𝑚𝑚𝑚∇2𝐹𝐹𝐹𝐹ℒ 𝝑𝝑𝝑𝝑 )𝝑̇𝝑𝝑𝝑 + 𝑚𝑚𝑚𝑚𝑞𝑞𝑞𝑞 + 𝑛𝑛𝑛𝑛𝑝𝑝𝑝𝑝 ∇𝐹𝐹𝐹𝐹ℒ 𝝑𝝑𝝑𝝑 =0               (2)

Preliminary Result: The following theorem shows that for a fixed rate 
of convergence, one can find many accelerated ODEs. 

Main Theorem
The learning problem can be formulized as

min
𝜃𝜃𝜃𝜃∈ℝ𝑛𝑛𝑛𝑛×𝑛𝑛𝑛𝑛

1
𝑁𝑁𝑁𝑁
�
𝑖𝑖𝑖𝑖

ℒ(𝒚𝒚𝒚𝒚𝒊𝒊𝒊𝒊, 𝑓𝑓𝑓𝑓 𝒙𝒙𝒙𝒙𝒊𝒊𝒊𝒊,𝜽𝜽𝜽𝜽 )

which is known as Empirical Risk Minimization (ERM) problem.
Depending on the features of 𝑓𝑓𝑓𝑓 and ℒ , this problem can be non-linear
and non-convex. Therefore, if not impossible, it would be so hard to
find the global minimizer(s) of this problem. For simplicity, from now
on we consider the objective function to be smooth and 𝜇𝜇𝜇𝜇-strongly
convex and denote it as 𝐹𝐹𝐹𝐹ℒ(𝒙𝒙𝒙𝒙,𝒚𝒚𝒚𝒚,𝜽𝜽𝜽𝜽).

𝜃𝜃𝜃𝜃∗

𝜃𝜃𝜃𝜃0
𝜃𝜃𝜃𝜃1

NAG updates for min
𝜃𝜃𝜃𝜃∈ℝ𝑛𝑛𝑛𝑛×𝑛𝑛𝑛𝑛 𝐹𝐹𝐹𝐹ℒ(𝒙𝒙𝒙𝒙,𝒚𝒚𝒚𝒚,𝜽𝜽𝜽𝜽) are[]

�𝒗𝒗𝒗𝒗𝑘𝑘𝑘𝑘+1 = 𝛾𝛾𝛾𝛾𝒗𝒗𝒗𝒗𝑘𝑘𝑘𝑘 + ℎ∇𝐹𝐹𝐹𝐹ℒ(𝒙𝒙𝒙𝒙,𝒚𝒚𝒚𝒚,𝜽𝜽𝜽𝜽𝒌𝒌𝒌𝒌 − 𝛾𝛾𝛾𝛾𝒗𝒗𝒗𝒗𝑘𝑘𝑘𝑘)
𝜽𝜽𝜽𝜽𝑘𝑘𝑘𝑘+1 = 𝜽𝜽𝜽𝜽𝑘𝑘𝑘𝑘 − 𝒗𝒗𝒗𝒗𝑘𝑘𝑘𝑘+1

,

which gets the best of the momentum term
𝒗𝒗𝒗𝒗𝑘𝑘𝑘𝑘 and calculates the gradient near the future
point 𝜽𝜽𝜽𝜽𝑘𝑘𝑘𝑘+1(see Figure).

Shi, et. al. proposed high-resolution ODEs for modeling acceleration
methods [1]. Specifically, if 𝝑𝝑𝝑𝝑 denotes the continuous trajectory of the
NAG, then

�
𝝑̇𝝑𝝑𝝑 = − ℎ∇𝐹𝐹𝐹𝐹ℒ 𝝑𝝑𝝑𝝑 − 𝜇𝜇𝜇𝜇(𝝑𝝑𝝑𝝑 − 𝑉𝑉𝑉𝑉)

𝑉̇𝑉𝑉𝑉 = − 𝜇𝜇𝜇𝜇(𝑉𝑉𝑉𝑉 − 𝝑𝝑𝝑𝝑) − 1
𝜇𝜇𝜇𝜇
∇𝐹𝐹𝐹𝐹ℒ 𝝑𝝑𝝑𝝑

(1)

with 𝝑𝝑𝝑𝝑 0 = 𝝑𝝑𝝑𝝑𝟎𝟎𝟎𝟎, 𝝑̇𝝑𝝑𝝑 0 = −2 ℎ∇𝐹𝐹𝐹𝐹ℒ(𝝑𝝑𝝑𝝑0)
1+ 𝜇𝜇𝜇𝜇ℎ

will converge to the global

minimizer with rate

𝐹𝐹𝐹𝐹ℒ 𝝑𝝑𝝑𝝑 − 𝐹𝐹𝐹𝐹ℒ 𝝑𝝑𝝑𝝑∗ ≤ 2||𝝑𝝑𝝑𝝑𝟎𝟎𝟎𝟎−𝝑𝝑𝝑𝝑∗||2

ℎ
𝑒𝑒𝑒𝑒
− 𝜇𝜇𝜇𝜇𝑡𝑡𝑡𝑡
4 .

Interestingly, if one discretizes the above ODE with semi-implicit
Euler scheme, then with small step size NAG is approximately a
symplectic method. Also, implicit Euler scheme leads to acceleration,
but it is not easy to use in practice [2].

Theorem 1: Assume 𝐹𝐹𝐹𝐹ℒ 𝝑𝝑𝝑𝝑 is 𝐿𝐿𝐿𝐿-smooth and 𝜇𝜇𝜇𝜇-strongly convex. Then if
𝝑𝝑𝝑𝝑 𝑡𝑡𝑡𝑡 and 𝑉𝑉𝑉𝑉 𝑡𝑡𝑡𝑡 are such that (2) holds, the Lyapunov function

𝜀𝜀𝜀𝜀 𝑡𝑡𝑡𝑡 = 𝐹𝐹𝐹𝐹ℒ 𝝑𝝑𝝑𝝑 𝑡𝑡𝑡𝑡 − 𝐹𝐹𝐹𝐹ℒ 𝝑𝝑𝝑𝝑∗ + 𝐴𝐴𝐴𝐴 𝑉𝑉𝑉𝑉 𝑡𝑡𝑡𝑡 − 𝝑𝝑𝝑𝝑∗ 2

will decrease as

𝜀𝜀𝜀𝜀 𝑡𝑡𝑡𝑡 ≤ 𝑒𝑒𝑒𝑒−min 𝑛𝑛𝑛𝑛,𝑞𝑞𝑞𝑞4 𝑡𝑡𝑡𝑡𝜀𝜀𝜀𝜀(0)
with  max 𝑚𝑚𝑚𝑚

𝑞𝑞𝑞𝑞
, 𝑛𝑛𝑛𝑛𝜇𝜇𝜇𝜇
𝑞𝑞𝑞𝑞

≤ 𝐴𝐴𝐴𝐴 ≤ min 𝑛𝑛𝑛𝑛
2 𝑞𝑞𝑞𝑞+𝑝𝑝𝑝𝑝

, 4𝑛𝑛𝑛𝑛𝜇𝜇𝜇𝜇
3𝑞𝑞𝑞𝑞

and 𝑚𝑚𝑚𝑚,𝑛𝑛𝑛𝑛, 𝑝𝑝𝑝𝑝, 𝑞𝑞𝑞𝑞 ≥ 0.
We can apply semi-implicit Euler integrator to achieve the
corresponding algorithm

�𝒗𝒗𝒗𝒗𝑘𝑘𝑘𝑘+1 − 𝒗𝒗𝒗𝒗𝑘𝑘𝑘𝑘 = −𝑝𝑝𝑝𝑝 ℎ∇𝐹𝐹𝐹𝐹ℒ 𝒙𝒙𝒙𝒙,𝒚𝒚𝒚𝒚,𝜽𝜽𝜽𝜽𝒌𝒌𝒌𝒌+𝟏𝟏𝟏𝟏 − 𝑞𝑞𝑞𝑞 ℎ(𝒗𝒗𝒗𝒗𝑘𝑘𝑘𝑘−𝜽𝜽𝜽𝜽𝑘𝑘𝑘𝑘)
𝜽𝜽𝜽𝜽𝑘𝑘𝑘𝑘+1 − 𝜽𝜽𝜽𝜽𝑘𝑘𝑘𝑘 = −𝑚𝑚𝑚𝑚 ℎ∇𝐹𝐹𝐹𝐹ℒ 𝒙𝒙𝒙𝒙,𝒚𝒚𝒚𝒚,𝜽𝜽𝜽𝜽𝒌𝒌𝒌𝒌 − 𝑛𝑛𝑛𝑛 ℎ(𝜽𝜽𝜽𝜽𝑘𝑘𝑘𝑘 − 𝒗𝒗𝒗𝒗𝑘𝑘𝑘𝑘)

(3)

The following theorem shows the convergence rate of this algorithm.

Theorem 2: Assume 𝐹𝐹𝐹𝐹ℒ 𝝑𝝑𝝑𝝑 is 𝐿𝐿𝐿𝐿-smooth and 𝜇𝜇𝜇𝜇-strongly convex. Then if
𝜽𝜽𝜽𝜽𝑘𝑘𝑘𝑘 and 𝒗𝒗𝒗𝒗𝑘𝑘𝑘𝑘 follow the updates (3), the Lyapunov function

𝜀𝜀𝜀𝜀 𝑘𝑘𝑘𝑘 = 𝐹𝐹𝐹𝐹ℒ 𝝑𝝑𝝑𝝑𝑘𝑘𝑘𝑘 − 𝐹𝐹𝐹𝐹ℒ 𝝑𝝑𝝑𝝑∗ + 𝐴𝐴𝐴𝐴𝐴𝐴 𝒗𝒗𝒗𝒗𝑘𝑘𝑘𝑘 − 𝝑𝝑𝝑𝝑∗ 2

will decrease as
𝜀𝜀𝜀𝜀 𝑘𝑘𝑘𝑘 + 1 ≤ (1 − 𝜆𝜆𝜆𝜆)𝑘𝑘𝑘𝑘𝜀𝜀𝜀𝜀(0)

with 
𝑛𝑛𝑛𝑛

2𝑞𝑞𝑞𝑞(1−𝑞𝑞𝑞𝑞 ℎ−𝑝𝑝𝑝𝑝 ℎ)
≤ 𝐴𝐴𝐴𝐴𝐴𝐴 ≤ min 1

4𝐿𝐿𝐿𝐿 𝑞𝑞𝑞𝑞 ℎ−𝑞𝑞𝑞𝑞2ℎ
, 𝜇𝜇𝜇𝜇2

4𝐿𝐿𝐿𝐿(𝑞𝑞𝑞𝑞 ℎ−𝑝𝑝𝑝𝑝 ℎ𝜇𝜇𝜇𝜇2−𝑝𝑝𝑝𝑝2ℎ𝜇𝜇𝜇𝜇2)
,

𝑝𝑝𝑝𝑝 ℎ ≤ 𝑞𝑞𝑞𝑞 ℎ ≤ 1
2

, 1
2𝐿𝐿𝐿𝐿 ℎ

≤ 𝑚𝑚𝑚𝑚 ≤ 1
𝐿𝐿𝐿𝐿 ℎ

,𝑛𝑛𝑛𝑛 ≤ 1−𝑞𝑞𝑞𝑞 ℎ−𝑝𝑝𝑝𝑝 ℎ
2𝐿𝐿𝐿𝐿 1−𝑞𝑞𝑞𝑞 ℎ ℎ

, 𝑚𝑚𝑚𝑚,𝑛𝑛𝑛𝑛, 𝑝𝑝𝑝𝑝, 𝑞𝑞𝑞𝑞 ≥ 0,

𝜆𝜆𝜆𝜆 = min{𝑞𝑞𝑞𝑞 ℎ − 𝑝𝑝𝑝𝑝 ℎ, 2
𝐿𝐿𝐿𝐿

(𝜇𝜇𝜇𝜇
2

4𝐿𝐿𝐿𝐿
+ 𝐴𝐴𝐴𝐴′𝑝𝑝𝑝𝑝 ℎ𝜇𝜇𝜇𝜇2 + 𝐴𝐴𝐴𝐴′𝑝𝑝𝑝𝑝2ℎ𝜇𝜇𝜇𝜇2 − 𝐴𝐴𝐴𝐴𝑞𝑞𝑞𝑞 ℎ)}.

For comparison, the
trajectory of Lyapunov
function above (3) is
compared with the
Lyapunov function in
[3]. Of course, there
are conditions under
which the behaviours
are different. Deeper
analysis is left for
future work.
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Norms are both a regular occurrence in human reasoning, as well as a useful tool for governing the 
behaviour of agent populations. However, what exactly norms are, and how we can effectively use 
them in computer science is poorly understood. For example, in CS, norms are often purely used as 
constraints of behaviour, while they can also have a strong motivating component.
In our research, we try to address this issue by formalizing sociological and psychological theories 
of norms. This gives us a framework for studying norms and their interactions. Besides this, we also 
study how norms influence human reasoning, and how agents can use them in their reasoning.

Normative reasoning for Social AI
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Umeå University
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Norms are both a regular occurrence in human reasoning, as well as a useful tool for governing the behaviour of agent populations. 
However, what exactly norms are, and how we can effectively use them in computer science is poorly understood. For example, in CS, 
norms are often purely used as constraints of behaviour, while they can also have a strong motivating component.
In our research, we try to address this issue by formalizing sociological and psychological theories of norms. This gives us a framework 
for studying norms and their interactions. Besides this, we also study how norms influence human reasoning, and how agents can use 
them in their reasoning.

Why norms?

References
1. Mellema R., Jensen M., Dignum F. (2021) Social Rules for 

Agent Systems. 
2. Dignum, F. (2021) Social Simulation for a Crisis
3. Brennan G., Eriksson L., Goodin R., Southwood N. (2013) 

Explaining norms
4. Vázquez-Salceda, J., Aldewereld, H., Grossi, D., & Dignum, F. 

(2008). From human regulations to regulated software agents’ 
behavior

Motivation & Research goals

If we want the agents to use norms, the norms do not only need to
be represented, but the agents also need to know when to take them
into account in their reasoning. This needs to happen in:
• Goal generation: Norms can have obligations attached, which

can motivate an agent to take actions it otherwise would not have
• Context detection: Part of a context is what norms are active,

which can influence what actions the agent considers
• Planning: Not every plan an agent can follow has to follow all

norms, but it should make the decision whether or not to follow a
plan/take an action based on the norms it might follow/break

In all of these, whether or not the agent should follow a norm is an
important consideration.

Agents with normative 
deliberation

In human societies, norms are used to build accountability and 
cooperation. This means they play an integral part in all our day-
to-day interactions, they can have internal effects, and norm 
following/breaking behaviour carries meaning as well. This means 
that they have a strong motivational component.
In social simulation we want to model human societies to e.g. 
study them or make predictions about reactions to changes. Since 
norms play such a pivotal role in human societies, they can have a 
large effect in these simulations.

The formalizations

Further questions
• Where in the decision making process should norms exert an 

influence?
• How do we combine normative reasoning with other types of 

motivation?
• When should an agent break a norm?

• What factors influence this decision?
• How do identities and norms interact?
• When should an agent sanction another agent for breaking a

norm?

Why new formalizations?
However, in CS norms get used in multi-agent systems to control 
the behaviour of heterogenous populations of agents. This means 
the focus is often on norms as constraints. This means current 
formalizations ignore the motivational aspects, as well as 
sanctioning behaviours. Both of these are important for norm 
change, which is currently also not well understood.

We are interested in representing norms in our simulations such 
that agents can reason with them. This requires that various 
aspects of the norm are incorporated in the design:
• Activation/deactivation conditions
• Violation condition
• Sanctions for breaking the norm

Similarly, the agents need to be able to react to other agents norm 
breaking behaviour, which means the representation also needs to 
take violations into account. Current research is ongoing on how to 
best represent violations, and which aspects are necessary to 
differentiate between them. Using this, a framework for normative 
reasoning in CTL is being developed.

Norm change
While norms can stabilize a society, they are not static. Since we are 
interested in peoples possible responses to new policy, how this 
influences old norms and shapes new ones is vital. Currently, our 
work here focusses on how agents can break norms, and why they 
might do so.
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Neural networks (MLPs) and GANs can be interpreted/represented as systems of interacting particles. 
This may enable using techniques from statistical physics, probability theory and partial differential 
equations in the understanding of neural networks. Future work includes establishing laws of large 
deviations (LDP) to help make these connections.
This poster shows two different frameworks in which single hidden layer neural networks, an GANs 
are treated from this perspective.
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Introduction
Several frameworks have been proposed that establish
a particle dynamic view of neural networks. In two
different fashions, one can see the training and inference
of a network as the behavior of a many-particle system,
consisting of say N particles. Further, such systems
with N particles have a ‘mean-field’ behavior when
letting N → ∞, i.e., having the characteristic of a
‘smooth’ distribution. This lends itself to so called mean-
field approximation, where for large N , the system is
approximated by the limit behavior instead. Thus,
the discrete probability distribution of the N -particle
system is replaced by a continuous distribution instead.
This distribution and its evolution under the training
dynamics can then be described by a PDE, or a so-called
gradient flow.
Several questions remain about the convergence to the
mean-field limit.
Current literature establishes some convergence results
of law of large numbers (LLN) central limit theorem
(CLT) type, while not giving any convergence rates.
The current goal is to go beyond these results and
use the theory of large deviations to develop a large
deviations principle (LDP), which gives convergence
rate guarantees based on a rate function.

One hidden layer neural
network

Consider a one hidden layer neural network fθ : Rd →
R. Its prediction can be seen as an average of the N
hidden neurons, i.e.,

fθ(x) = 1
N

N∑
i=1

ϕ(x, θi).

How is the behavior when N → ∞? With an L2-loss
function it turns out that the loss can be written as

l(θ1, ..., θN) =
N∑

i=1
F (θi) + 1

2N

N∑
i,j=1

K(θi, θj). (1)

Defining the empirical measure of the weights, µt =∑N
i=1 δθi,t

, we have that a standard gradient descent
(with infinitessimal timestep) follows the PDE

∂tµt = ∇ · (µt∇V ), (2)
in the many-particle limit.

GANs
Generative adversarial networks consist of a pair of
networks, G : Z → X and D : X → [0, 1], that
compete in some two-player game, for instance the
following zero-sum game.

min
G

max
D

Ex[log(D(x))] + Ez[log(1 − D(G(z)))] (3)

Existence of pure Nash equilibria are not guaranteed
in continuous games. However, the existence of mixed
Nash equilibria is guaranteed. A mixed Nash equilib-
rium is a Nash equilibrium for the relaxed game

L(µx, µy) :=
∫ ∫

l(x, y) µx(dx)µy(dy). (4)

Thus, we consider mixed strategies µx, µy instead of
pure strategies x, y. In practice, this is done by having
multiple "particles" {xi

t}n
i=1, {yi

t}n
i=1 and letting their

empirical measures approximate µx, µy.

µn
x,t := 1

n

n∑
i=1

δxi
t
, µn

y,t := 1
n

n∑
i=1

δyi
t

(5)

How should we optimize δxi
t
, δyi

t
? Gradient descent-

ascent (DA) dynamics correspond to

dXi
t = −1

n

n∑
j=1

∇xl(Xi
t, Y j

t )dt,

dY i
t = 1

n

n∑
j=1

∇yl(Xj
t , Y i

t )dt.

(6)

Future work
The mean-field behavior is described in [2] and [1]. Cur-
rently, we want to strengthen those results by providing
a LDP.
The dynamics of equation (2) and equation (6) can be
modified by including a diffusion term, e.g. adding the
term

√
2β−1dW i

t to equation (6). We would further
like to see how the size of the inverse temperature β
affects the convergence.

References
[1] Carles Domingo-Enrich et al. “A mean-field analysis of two-
player zero-sum games”. In: arXiv preprint arXiv:2002.06277
(2020).
Grant Rotskoff et al. “Global convergence of neuron birth-death
dynamics”. In: arXiv preprint arXiv:1902.01843 (2019).
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Constraint satisfaction problems (CSPs) have many applications in AI including planning, knowledge 
representation, and reasoning. Given a set of variables and constraints, the goal in a CSP is to find an 
assignment that satisfies all constraints. The computational complexity of a CSP depends on the set of 
allowed constraints. For all sets of constraints over a finite domain, the dichotomy theorem of Bulatov 
and Zhuk distinguishes between problems that are in P and NP-complete. Almost CSP is an opti-
mization version, where the goal is to find an assignment that violates as few constraints as possible. 
Applications include handling noise, dealing with faulty measurements, and repairing merge conflicts 
in databases. With an additional assumption that the number of violated constraints is small, Almost 
CSP becomes interesting from the point of view of parameterized complexity. Here one needs to dis-
tinguish between problems in P, in FPT, W[1]-hard and NP-hard. In our work, we give a full classifi-
cation for Almost Simple Temporal Problem (STP), an influential reasoning formalism for temporal 
information.
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Toy Problem

Setting:
You teach a class and n students signed up.
You need to assign them into 2 groups.
Some students are friends and asked to be in the same group.
Some students are foes and asked to be in different groups.

Question 1: Can you divide students and respect all preferences?

Mathematical model:
Introduce a variable xi for every student i ∈ {1, . . . , n}.
Let’s set xi = 1 (xi = 2) if student i is assigned to group 1 (2).
If i and j are friends, the assignment should satisfy the constraint xi = xj.
If i and j are foes, the assignment should satisfy the constraint xi ̸= xj.
Find an assignment f : {x1, . . . , xn} → {1, 2} that satisfies all constraints.

Follow-up:
What if no such assignment exists?
One can try to find an assignment that violates as few constraints as possible (upsets
the students as little as possible).

Question 2: Can you divide students and disregard as few preferences as possible?

General Problem: Constraint Satisfaction

Let D be a domain (i.e., a set of values) and A be a set of relations over D.

Constraint Satisfaction Problem (CSP(A))

Instance: A set of variables V and a set of constraintsC of the formR(v1, . . . , vr),
where R is a relation from A and v1, . . . , vr ∈ V .
Question: Is there an assignment f : V → D that satisfies all constraints in C?

Almost Constraint Satisfaction

Almost Constraint Satisfaction Problem (AlmostCSP(A))

Instance: An instance (V,C) of CSP(A) and an integer k.
Question: Is there an assignment f : V → D that satisfies all but k constraints
in C?

Toy Problem as a CSP

Variables: V = {x1, . . . , xn} (one variable per student).
Domain: {1, 2} (groups).
Relations: {=, ̸=}.
Call the problem CSP(T ).

Complexity:
CSP(T ) is in P. AlmostCSP(T ) is NP-hard and fixed-parameter tractable.

Parameterized Complexity of AlmostCSP

Parameter k – number of violated constraints.
PC of AlmostCSP(A) is only interesting if it is NP-hard and CSP(A) is in P.
Can be solved in nO(k) time by considering every subset of n− k constraints.
Impractical even for small values of k.
If it can be solved in FPT time, i.e. f (k) · nC for some function f of k and a constant
C independent of k, then the algorithm is efficient for small values of k.

AlmostCSP Classification Project
For which A does AlmostCSP(A) admit an FPT algorithm?

Parameterized Complexity Theory

k-Vertex Cover

Goal: Cover all edges with k vertices.

Solvable in f (k) · nC time - in FPT.

k-Independent Set

Goal: Find k non-adjacent vertices.

Solvable in nO(k) time - W[1]-hard.

Main Conjecture: FPT ̸= W[1].

Simple Temporal Problem (STP)

Introduced by Dechter, Meiri, and Pearl in 1989.
Variables x1, x2, . . . , xn represent points in time.
Constraints: a ≤ xi − xj ≤ b, where a, b ∈ Q ∪ {−∞,∞}.
Denote the problem by CSP(S).

−1 ≤ x4 − x1 ≤ 4

2 ≤ x2 − x1 ≤ 4

2 ≤ x3 − x2 ≤ 3

1 ≤ x5 − x4 ≤ 2

2 ≤ x2 − x4 ≤ ∞
−∞ ≤ x3 − x5 ≤ 1

−∞ ≤ x2 − x5 ≤ 3.

x1

x2

x3

x4

x5

-2 4

-2 3

1

4

-2

3

1

-1 2

An instance is satisfiable iff its distance graph has no negative cycle. In P.

AlmostSTP Classification

Theorem: Let A ⊆ S. Then AlmostCSP(A) is

- in constant time if A is trivial (all relations satisfied by setting xi = xj).

- in FPT if A only contains left/right-sided relations (xi − xj ⋚ c for c ∈ Q≥0).

- in FPT if A only contains equation relations (xi − xj = c for c ∈ Q).

- W[1]-hard otherwise.

Equation STP

An interesting special case. Satisfiable if and only if has no non-zero cycles.

x1 − x2 = 1

x3 − x2 = 2

x4 − x3 = 3

x4 − x5 = 2

x6 − x5 = 1

x6 − x1 = 3

x3 − x6 = 2.

x1

x2 x3

x4

x5x6

1

2

3

2

1

3

2-1

-2

-3

-2

-1

-3 -2

Generalize balanced signed graphs. Special case of balanced group-labelled graphs.

All results for Almost STP can be found in “Resolving Inconsistencies in Simple Temporal Problems: A Parameterized
Approach” by Konrad K. Dabrowski, Peter Jonsson, Sebastian Ordyniak, George Osipov (to appear in AAAI 2022). Access a
preliminary version here: https://tinyurl.com/almostp.
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Standard Bayesian Optimization (BO) is known to perform only well for up to 20-30 input dimensi-
ons. Optimizing higher-dimensional functions requires changes to the model or further assumptions 
on the problem itself. One line of current research focuses on sparse problems, where one assumes 
that the problem lies in a low-dimensional subspace of the higher-dimensional (ambient) space. Such 
methods perform BO in a lower-dimensional subspace that ideally captures the true effective subspa-
ce. Most algorithms for such problems, however, require an appropriate guess for the effective dimen-
sionality as they rely on fixed embeddings. We present an algorithm that softens this requirement 
by introducing adaptive embeddings that increase the lower-dimensional subspace over time. Our 
algorithm outperforms the state-of-the-art on many benchmarks while being more computationally 
efficient than many contemporary approaches.
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Motivation & Research Goals

Standard Bayesian Optimization (BO) is known to perform only well for up to 20 input dimensions [2]. Optimizing higher-dimensional functions requires
changes to the model or further assumptions on the problem itself. Current research considers sparse problems where the problem lies in a low-dimensional
subspace of a higher-dimensional (ambient) space. Such methods perform BO in a lower-dimensional subspace that aims at capturing the true effective
subspace. Yet, most algorithms for such problems require an appropriate guess on the effective dimension. We present an algorithm (AdaTheSBO) that
softens this requirement by using adaptive embeddings that increase the subspace dimension over time. [Unpublished, preliminary state.]

Problem and Algorithm

Minimization of expensive-to-evaluate black-box function f : RD → R:
x∗ ∈ argminx∈X f(x), where X is D-dimensional (D ≫ 20). We
assume that there exists a low-(d-)dimensional (d ≤ 20) subspace Y that
can be mapped to by a linear embedding, and f is axis-aligned.

Use HeSBO embedding [3] to train an information-preserving Gaussian
Process (GP) in trust region [1] of a subspace of increasing dimension.

Ambient space Latent space
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0.3
0.3
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0.7
0.7
0.3
0.3
0.3
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y3

0.7
0.3
0.3

copy

Figure 1: Increasing the dimension of the embedding from 2 to
3 (y2 is split). Information can be preserved with the HeSBO
embedding when increasing the dimension.

Algorithm 1 Ada-TheSBO Algorithm Outline

Require: initial latent dimension d
sample random HeSBO embedding, defining up-projection ST

while not converged or budget available do
while trust region sufficiently large do

find candidate x(t) by maximizing Thompson sample
evaluate f(STx(t)); update GP; update TR

end while
if no progress in inner while-loop then

re-start with new embedding and new GP
else

split latent dimension(s) with smallest GP length scale
end if
d ← d+ 1

end while
Return Overall best x so far

Contributions

• First algorithm with an embedding of increasing dimension

• Outperforms state-of-the-art on a variety of problems

• Works in arbitrarily high-dimensions as long as d bounded

Selected Results
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AdaTheSBO
is agnostic with
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ambient dimen-
sion for a fixed
effective dimension.

Strong performance on sparse-axis aligned, competitive on sparse, non-
axis aligned problems. Poor performance on truly high-dimensional prob-
lems.
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With the increasing popularity of mobile devices and the development of the internet of things (IoT), 
accessibility to vast amounts of data has been grown. Further, the global number of connected IoT 
devices will reach more than 4 billion by 2024. On the flip side, taking advantage of large data sets 
can aid us in solving many complex problems in Machine Learning (ML). The primary challenges 
are communication latency, bandwidth consumption, energy limitations, privacy, and security. With 
limited communication resources, it is challenging to achieve efficient data aggregation over a large 
volume of IoT devices, as a critical point for exploiting the potential of the distributed ML. Unlike the 
standard “transmit-then-compute” approach, the over-the-air computation approach integrates com-
munication and computation steps and provides ultra-fast wireless data aggregation in IoT networks.
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Motivation

Digital Communication

• Computing a function of input data at edge server by leveraging
superposition property of electromagnetic waves

• Wireless communications become wireless computations

Benefits:
1. Integrate the communication and computation
2. Bandwidth is shared among all users in the time, frequency and

code domain
3. More spectral efficient than transmit-then-compute
4. Transmission relies on analog communication
5. Fast wireless data aggregation

• Digital Communications can be seen as a probabilistic digital
map/function between input code-words and output code-
words

• In so doing, we can allow digital communication to perform
probabilistic function computations

• The probability map i.e. 𝑃𝑃 𝑌𝑌 𝑋𝑋1, 𝑋𝑋2, … , 𝑋𝑋𝑀𝑀 can be designed by
artificially enforcing the probability correspondence input
output (changing the modulation formats)

Analog Modulation

Digital Modulation

• Nomographic functions can be calculated
• Mean 𝑟𝑟 = 1

𝐾𝐾 σ𝑘𝑘=1
𝐾𝐾 𝑤𝑤𝑘𝑘

• Multiplication 𝑟𝑟 = ς𝑘𝑘=1
𝐾𝐾 𝑤𝑤𝑘𝑘

• Maximum 𝑟𝑟 = max
𝑘𝑘

𝑤𝑤𝑘𝑘

Ni et al. [2]

Chen et al. [1]

With the increasing popularity of mobile devices and the development of the internet of things (IoT), accessibility to vast amounts of data
has been grown. Further, the global number of connected IoT devices will reach more than 4 billion by 2024. On the flip side, taking
advantage of large data sets can aid us in solving many complex problems in Machine Learning (ML). The primary challenges are
communication latency, bandwidth consumption, energy limitations, privacy, and security. With limited communication resources, it is
challenging to achieve efficient data aggregation over a large volume of IoT devices, as a critical point for exploiting the potential of the
distributed ML. Unlike the standard “transmit-then-compute” approach, the over-the-air computation approach integrates communication
and computation steps and provides ultra-fast wireless data aggregation in IoT networks.
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Finding a directed acyclic graph (DAG) that best encodes the conditional independence statements 
observable from data is a central question within causality. Algorithms that greedily transform one 
candidate DAG into another given a fixed set of moves have been particularly successful, for example 
the GES, GIES, and MMHC algorithms. In 2010, Studený, Hemmecke and Lindner introduced the 
characteristic imset polytope, CIM_p , whose vertices correspond to Markov equivalence classes, as 
a way of transforming causal discovery into a linear optimization problem. We show that the moves 
of the aforementioned algorithms are included within classes of edges of CIM_p and that restrictions 
placed on the skeleton of the candidate DAGs correspond to faces of CIM_p . Thus, we observe that 
GES, GIES, and MMHC all have geometric realizations as greedy edge-walks along CIM_p.
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Graphical Models
Directed Acyclic graphs (DAGs) are commonly used for complexmodels and causal
interference [2]. DAGs encode conditional independence statements in the following
way:

X1 X3

X2

X1⊥⊥X3|∅
X1 ⊥̸⊥ X3|X2

X1

X2

X3

X1⊥⊥X3|X2
X1 ⊥̸⊥ X3|∅

X2

X1 X3

X1⊥⊥X3|X2
X1 ⊥̸⊥ X3|∅

Goal 1 Given dataD onX1, . . . , Xp, find the DAG that “best” fits our data.

Several algorithms have been proposed, for example PC, greedy SP, GES, GIES, and
MMHC.

Characteristic Imset Polytope
The characteristic imset [4] of a DAG G is a vector in RΥ where Υ := {S ⊆
[p] : |S| ≥ 2}. It is defined as

cG(S) =



1 if ∃i ∈ S s.t. S ⊆ paG(i) ∪ {i}
0 otherwise.

It was shown [4] that any (additive) decomposable score equivalent function can be
written as a linear function inRΥ. Thus we consider the polytopes

CIMp := conv(cG : G is a DAGwith p nodes)
and if we have two graphsG ⊆ H we define

CIMG,H := conv(cG : G a DAGwith skeletonD such thatG ⊆ D ⊆ H).
Example 1 Let us considerCIM. .. , .

. .. .

.

Proposition 1 CIMG,H is a face ofCIMp.

Hence Goal 1 can be formulated as the following.
Goal 2 Given a (additive) decomposable score equivalent function sD. Maximize sD over
CIMp.
GES, GIES, andMMHCall use the Bayesian InformationCriterion (BIC) as a score

function.

Edges of CIMp and CIMG

If G is a directed graph with i → j ∈ G we denote by Gi←j the directed graph iden-
tical to G except that the edge i → j is replaced with i ← j.
Proposition 2 If Gi←j is a DAG, then either G and Gi←j are Markov equivalent, or
conv

(
cG, cGi←j

)
is an edge ofCIMG.

LetG be aDAGand assume i and j are not adjacent in the skeleton ofG. We denote
by G+i←j the directed graph identical to G with the edge i ← j ∈ G+i←j .
Proposition 3 If G+i←j is a DAG, then conv

(
cG, cG+i←j

)
is an edge ofCIMp.

We also show several more classes of edges.

Theorem 4The following causal discovery algorithms are greedy edge-walks along a face
ofCIMp:
1. GES,
2. GIES with purely observational data,
3. MMHC, and
4. Greedy SP [1].

Thuswe can define two algorithmsGreedy CIM and Skeletal Greedy CIM as greedy
depth-first edge-walks along CIMp and CIMG respectively. By the above proposi-
tions Greedy CIM generalize GES and GIES with observational data. The graph G
in Skeletal GreedyCIMwas determined using conditional independence test similar
to PC. A recurrent phased breadth-first version of Greedy CIM was as well imple-
mented, as an easier comparison to GES and GIES.

Computational Results
Thealgorithmswere implemented on simulated data using linear structural equation
models with Gaussian noise. The code is available at [3].
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Wesee that among algorithmsusing conditional independence test SkeletalGreedy
CIMperformsbetter thanprevious algorithms. In thepurely scorebasedmethods the
breadth first algorithms have a higher recovery rate, but that can change ifmore edges
ofCIMp were found and classified.

[1] F. Mohammadi, C. Uhler, C. Wang, and J. Yu, Generalized permutohedra from probabilistic graphical models, SIAM Journal on Discrete
Mathematics, 32 (2018), pp. 64–93.

[2] J. Pearl,Causality : Models, Reasoning, and Inference, Cambridge University Press, Cambridge, U.K. New York, 2000.
[3] P. Restadh and L. Solus, causalCIM. GitHub Repository, 2021.
[4] M. Studený, R. Hemmecke, and S. Lindner, Characteristic imset: A simple algebraic representative of a bayesian network structure, Pro-

ceedings of the 5th EuropeanWorkshop on Probabilistic Graphical Models, PGM 2010, (2010), pp. 257–265.
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The applications of reconstructing 3D models from 2D images include modelling of cities and objects 
for movies and video games, modelling clouds to predict the wheather, and helping robots and vehic-
les to orient themselves in new environments. Algebraic vision, which describes the algebraic compo-
nent, is a prominent connection between methods from algebraic geometry and artificial intelligence. 
I investigate the geometry of points and lines projected onto the images of a set of cameras, and the 
stability of different approaches in the algebraic part of the reconstruction. This can help engineers in 
building new algorithms.
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Algebraic Vision
Felix Rydell, KTH

Mathematics for Data and AI

The applications of reconstructing 3D models from 2D images include modelling of cities and objects for movies and video games, 
modelling clouds to predict the wheather, and helping robots and vehicles to orient themselves in new environments. Algebraic vision, 
which describes the algebraic component, is a prominent connection between methods from algebraic geometry and artificial 
intelligence. I investigate the geometry of points and lines projected onto the images of a set of cameras, and the stability of different 
approaches in the algebraic part of the reconstruction. This can help engineers in building new algorithms. 

References
1. Duff, T., Kohn, K., Leykin, A., & Pajdla, T. (2019). Plmp-point-

line minimal problems in complete multi-view visibility.
2. Agarwal, S., Furukawa, Y., Snavely, N., Curless, B., Seitz, S. 

M., & Szeliski, R. (2010). Reconstructing rome.
3. Gathmann, A. (2002). Algebraic geometry. Notes for a class 

taught at the University of Kaiserslauten (2002/2003) 
4. Trager, M., Hebert, M., & Ponce, J. (2015). The joint image 

handbook. 
5. Draisma, J., Horobeţ, E., Ottaviani, G., Sturmfels, B., & 

Thomas, R. R. (2016). The Euclidean distance degree of an 
algebraic variety.

Motivation & Research goals

Let C = 𝐶𝐶1,… , 𝐶𝐶𝑚𝑚 be a collection
of cameras, meaning a set of 𝑚𝑚
3 × 4 matrices that project points
and lines in ℙ3 to their images in
the cameras. Note that this map is
not linear affinely.

The Multiview Variety
The 
reconstruction 
pipeline. Algebraic 
vision concerns 
itself with part c). 

This table gives 
alternatives to 
part c). The first 
rows stand for 
number of 
cameras and the 
last row the 
number of 
solutions of 
camera positions 
[1]. The fewer 
number of 
solutions, the 
faster the 
algorithms. Two examples of 

reconstructions [2]. Once we 
have found the camera 
positions using an approach 
from the table above, we find 
the point/line cloud in 3D.

A systematic understanding of 
reconstruction is provided via 1) 
projective and 2) algebraic geometry. 

1) Projective space ℙ𝑛𝑛 is the set of lines 
in ℝ𝑛𝑛+1 passing through the origin. It is 
a compactification of ℝ𝑛𝑛, meaning it is 
equal to ℝ𝑛𝑛 and some additional points 
at infinity. 

2) Algebraic geometry is the study of systems 
of polynomials equations. A set of solutions to 
such a system is an algebraic variety.

A computer can 
understand an algebraic 
variety as a finite set of 
generators of a defining 
ideal in ℝ 𝑥𝑥1,… , 𝑥𝑥𝑛𝑛 . 

The image of ϒ𝐶𝐶 describes the geometry of 
projected lines in the camera planes. Its 
Zariski closure is the smallest variety 
containing it, and is called the multi-view 
variety. 

In joint work with E. Shehu, P. 
Breiding and A. Torres, we 
describe the multi-view variety 
geometrically and its defining 
ideal. 

The Grassmannian 𝐺𝐺𝐺𝐺(𝑘𝑘, 𝑛𝑛) is the set of linear 
𝑘𝑘-dimensional subspaces of ℙ𝑛𝑛 [3]. 

Results

There is numerical evidence that lines are 
more numerically robust than points. In this 
direction we consider the 1) ED degree [5], 
the 2) multi-degree and numerical 
experiments.

Algebraic vision can help practitioners in
- 1: Finding camera specifications,
- 2: Choosing point/line correspondences,
- 3: Improving speed of algorithms,
- 4: Determining robustness under noise.

1) The ED degree tells us how quickly we can 
``denoise’’ the data. The smaller the better.

2) The multi-degree tells us how ``curvy’’ the 
variety is. 

Future directions include explicit computations of ED degrees, theoretical 
understanding of numerical stability, and investigation of rolling shutter cameras. 

The point case is well-understood [4].
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Even though Weighted Lasso regression has appealing statistical guarantees, it is typically avoided 
due to its complex hyperparameter space described with thousands of hyperparameters. On the other 
hand, the latest progress with high-dimensional HPO methods for black-box functions demonstrates 
that high-dimensional applications can indeed be efficiently optimized. Despite this initial success, the 
high-dimensional hyperparameter optimization (HPO) approaches are typically applied to synthetic 
problems with a moderate number of dimensions which limits its impact in scientific and engineering 
applications. To address this limitation, we propose LassoBench, a new benchmark suite tailored for 
an important open research topic in the Lasso community that is Weighted Lasso regression. Lasso-
Bench consists of benchmarks on both well-controlled synthetic setups (number of samples, SNR, 
ambient and effective dimensionalities, and multiple fidelities) and real-world datasets, which enable 
the use of many flavors of HPO algorithms to be studied and extended to the high-dimensional Lasso 
setting. We evaluate 6 state-of-the-art HPO methods and 3 Lasso baselines, and demonstrate that 
Bayesian optimization and evolutionary strategies can improve over the methods commonly used for 
sparse regression while highlighting limitations of these frameworks in very high-dimension and noi-
sy settings. Remarkably, TuRBO and CMA-ES improve the Lasso baselines on 60, 100, 300, and 1000 
dimensional synthetic benchmarks, and the real-world benchmark based on the leukemia dataset by 
42.3%, 23%, 22.3%, 12.6% and 75%, respectively.

LassoBench:
A High-Dimensional Hyperparameter Optimization Benchmark Suite for Lasso

Šehić, Kenan
Lund University
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Even though Weighted Lasso regression has appealing statistical guarantees, it is typically avoided due to its complex hyperparameter space described 

with thousands of hyperparameters. On the other hand, the latest progress with high-dimensional HPO methods for black-box functions demonstrates that 
high-dimensional applications can indeed be efficiently optimized. Despite this initial success, the high-dimensional hyperparameter optimization (HPO) 
approaches are typically applied to synthetic problems with a moderate number of dimensions which limits its impact in scientific and engineering 

applications. To address this limitation, we propose LassoBench, a new benchmark suite tailored for an important open research topic in the Lasso 
community that is Weighted Lasso regression. LassoBench consists of benchmarks on both well-controlled synthetic setups (number of samples, SNR, 
ambient and effective dimensionalities, and multiple fidelities) and real-world datasets, which enable the use of many flavors of HPO algorithms to be 

studied and extended to the high-dimensional Lasso setting. We evaluate 6 state-of-the-art HPO methods and 3 Lasso baselines, and demonstrate that 
Bayesian optimization and evolutionary strategies can improve over the methods commonly used for sparse regression while highlighting limitations of 
these frameworks in very high-dimension and noisy settings. Remarkably, TuRBO [Eriksson, 2019] and CMA-ES [Hansen, 2016] improve the Lasso 

baselines on 60, 100, 300, and 1000 dimensional synthetic benchmarks, and the real-world benchmark based on the leukemia dataset by 42.3%, 23%, 
22.3%, 12.6% and 75%, respectively. 

LassoBench: A High-Dimensional 

HPO Benchmark Suite for Lasso
Kenan Šehić, Lund University (Computer Science)
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Summary

We introduce a benchmark suite called LassoBench that addresses the limitations 
of current high-dimensional optimization benchmarks found in the literature while 
providing an opportunity for AutoML researchers to help advance Lasso research. 
New insights from the AutoML community will reflect directly on Lasso applications, 
whose seminal paper has so far been cited more than 40,000 times [Tibshirani, 
1996].

LassoBench revolves around the non-convex optimization problem named 
Weighted Lasso regression, where the objective is to improve a linear model by 
optimizing the hyperparameters λ

j
 of the penalty term that promotes the sparsity in 

regression coefficients β* [Bertrand, 2020]. The challenge is that the penalty term is 
defined typically in a high-dimensional setting (e.g., d=106) .

 
LassoBench exposes a number of features, such as both noisy and noise-free 
benchmarks, well-defined effective dimensionality subspaces, and multiple 
fidelities, which enable the use of many flavors of Bayesian optimization algorithms 
to be improved and extended to the high-dimensional setting.

LassoBench includes the baselines commonly used in the Lasso community such 
as LassoCV [Massias, 2018], AdaptiveLassoCV [Massias, 2018] and Sparse-HO 
[Bertrand, 2020] for the comparison.

University LOGO

LassoBench Results

References

Figure 1 Baselines and HPO algorithms comparisons on synt_hard, left and right are noiseless and 
noisy, respectively. The bottom subplots show the best found estimations from each method, with 
confidence interval (for random methods) defined by one standard deviation out of 30 replications.

Figure 2 Comparison between the Lasso baselines and the HD-HPO methods for the Leukemia 
benchmark (left) and the RCV1 benchmark (right). The bottom subplot includes the best found MSE 
from each method and confidence intervals for random methods defined by one standard deviation 
out of 30 replications.

Table 3 Best-found MSE obtained for all optimizers, the synthetic benchmarks with both conditions 
(noiseless and noisy) and the real-world benchmarks based on the leukemia dataset and RCV1. We 
report means and standard deviation across 30 runs of each optimizer with N as the number of 
evaluations. For each benchmark, bold face indicates the best MSE.

For a simple 4-line tutorial on how to run LassoBench 
follow github.com/ksehic/LassoBench

Table 2 Real-world benchmarks in LassoBench. d
e
 is derived with Sparse-HO as d

e
 = ||β||

0
.

Table 1 Predefined synthetic benchmarks in LassoBench when the true regression 
coefficients β

true
 are known.

For more details, follow our preprint via 
arxiv.org/abs/2111.02790
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Many problems encountered in computer science and mathematics can be viewed as CSPs: for ex-
ample in spatio-temporal reasoning, computer vision, machine learning, scheduling, and bioinforma-
tics, and this makes the CSP a problem of central importance.
The goal of this research is to study the complexity of constraint satisfaction problems (CSPs) over 
infinite domain.
There has been a lot of results for sparsification of finite domain CSPs, but not as many in the case of 
infinite-domain CSPs.
It is an important direction of research since a domain of infinite size can capture many problems 
encountered in AI and logical reasoning, that cannot be formalised in finite-domain.
We aim to construct faster algorithms and methods that may be useful to analyse the kernelisation of 
parameterized versions of infinite-domain CSPs.

Sparsification of Infinite-domain CSPs

Sharma, Abhijat
Linköping University

AI MATH



Page

Sparsificationof Infinite-domainCSPs
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Motivation & Research Goals

Many problems encountered in computer science and mathematics can be viewed as CSPs: for example in spatio-temporal reasoning,
computer vision, machine learning, scheduling, and bioinformatics, and this makes the CSP a problem of central importance. The
goal of this research is to study the complexity of constraint satisfaction problems (CSPs) over infinite domain. There has been
a lot of results for sparsification of finite domain CSPs, but not as many in the case of infinite-domain CSPs. It is an important
direction of research since a domain of infinite size can capture many problems encountered in AI and logical reasoning, that cannot
be formalised in finite-domain. We aim to construct faster algorithms and methods that may be useful to analyse the kernelisation
of parameterized versions of infinite-domain CSPs.

Background
What is a CSP?
An instance of the constraint satisfaction problem consists of the following
as input:

• A set of variables V and a domain D of allowed values for the variables.

• A set of constraints C imposing certain restrictions on the value as-
signments to the variables.

The solution to a CSP is a value-assignment f : V → D such that
all constraints are satisfied. The most prominent complexity-theoretic
questions concerning CSPs is the following: given a set of relations Γ
(the constraint language), what is the complexity of CSP(Γ), i.e. the
CSP where the constraints contain only the relations from Γ.

Finite Domain Dichotomy: Bulatov([4]) and Zhuk([1]) inde-
pendently proved the long-standing conjecture: a finite-domain
CSP(Γ) is either polynomial-time solvable or NP-complete.

Infinite-domain CSPs are undecidable in general, however there exist many
well-understood fragments which admit complexity dichotomies. There
seems to be significant variance in the time-complexity of several CSPs,
even if most of them are NP-complete. Even though there is vast research
on fine-grained complexity of finite-domain and infinite-domain CSPs([2]),
it is interesting to study the fine-grained complexity of infinite-domain
CSPs restricted to certain kinds of constraints.

Sparsification and Kernelisation
Kernelisation is a pre-processing algorithm that takes an input instance
and reduces it to an smaller equivalent instance, called a "kernel". Our
goal is to compute efficient kernels for CSPs parameterized by the number
of input variables.
In the context of CSPs, we achieve kernelisation by efficiently reducing the
number of constraints in terms of the number of variables, while preserving
the solution. This is also known as sparsification of CSP instances.

Preliminary Results
Equality CSPs
For initial results, we focus on a specific class of CSPs, where the con-
straint language Γ only consists of equality relations.([3])

A relation R ⊆ Nk is an equality relation of arity k if it can be
defined as R = {(x1, x2, ..., xk) : ϕ(x1, x2, ..., xk)} where ϕ is a
first-order formula over the structure (N ; =).

When a constraint language Γ contains only relations of arity at-most
k, there exists a trivial sparsification of any CSP(Γ) instance to O(nk)
constraints. Our goal is to either achieve sparsification that is better than
this bound, or prove that such sparsification does not exist.

Kernel Lower Bounds
One of the most powerful tools used to analyse complexity of finite-domain
CSPs is the standard algebraic approach. This involves constructing a
framework that allows polynomial-time solution-preserving reductions be-
tween constraint languages, and their associated CSPs.
We have introduced algebraic methods that extend the above framework
for obtaining stronger lower bounds on kernel size. The following re-
sult makes use of QFPP-definitions and additionally some novel reduction
techniques inspired from the existing framework.

Lower Bound: Let Γ be an equality language such that CSP(Γ)
is NP-hard. Then CSP(Γ) admits no kernel of size O(n2−ϵ) where
n is the number of variables and ϵ > 0, unless NP ⊆ co-NP/poly.

Sparsification Techniques
We have introduced new sparsification methods based on the linear-
algebraic framework of viewing constraints as low-degree polynomials([5]).
We have applied these ideas to equality constraints and obtained optimal
results in certain cases. A natural research direction now is to better un-
derstand sparsification of equality constraints, and preferably obtain opti-
mal bounds for all equality languages. This will need the development of
even more powerful methods.

Beyond Equality Relations
Apart from equality relations, our aim is to generalise the linear-algebraic
techniques to more interesting cases such as temporal constraints over
the domain of rational numbers. For example, consider the following
well-studied relation, used for gene mapping in bioinformatics.

Betweenness: B = {(x, y, z) ∈ Q3 | x < y < z or z < x < y}

Our techniques allow us to sparsify both the above relations to a kernel
of O(n2) constraints. This is encouraging as it illustrates that the our
methods are applicable to CSPs far beyond equality relations. Our goal is
to utilize these sparsification techniques to more complex spatio-temporal
constraints used in AI, for instance the Allen’s Interval Algebra and RCC-8
Calculus.
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This project centers around the theory of causality and its applications to the complex data sets arising 
from social media platforms, mass media and the financial market. The primary industrial objective 
of the project is to gain a systematic understanding of the cause-effect network underlying (i) events 
reported in mass media, (ii) individual interactions in social media and (iii) measurable financial and 
economic indicators in the globally-coupled markets. As a first step in this direction, we are exploring 
a different approach to causal inference in time dependent data using Hawkes processes in contrast to 
the more classical time series approach.

Scalable Causal Inference in Mass Media

Toft, Albin
KTH

AI MATH



Page
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Motivation & Research Goals
This project centers around the theory of causality and its applications to the
complex data sets arising from social media platforms, mass media and the
financial market. The primary industrial objective of the project is to gain
a systematic understanding of the cause-effect network underlying (i) events
reported in mass media, (ii) individual interactions in social media and (iii)
measurable financial and economic indicators in the globally-coupled markets.
As a first step in this direction, we are exploring a different approach to causal
inference in time dependent data using Hawkes processes in contrast to the
more classical time series approach.

Granger Causality & Time Series Analysis
[1] When considering causality in time series, Granger causality and its vari-
ations are popular approaches. Consider a multivariate time series (Xt)t∈Z ,
such that the induced joint distribution is faithful with respect to the corre-
sponding full time graph. Then the summary graph has an arrow Xj → Xk

if and only if there exist a t ∈ Z such that

Xk
t �⊥ Xj

past(t)|X
−j
past(t).

Typically, one way of determining whether one time series Granger causes
another, is by modelling the multivariate time series as vectorized auto re-
gressive (VAR) processes

Xt = c+

p∑
i=1

AiXt−i + εt.

The task of determining the Granger causal relationships among the time
series, boils down to assessing which elements of the matrices Ai, i = 1...p
are non-zero.

Hawkes Processes
[2] A multi-dimensional Hawkes process is a counting process, where the in-
tensity of each separate counting process at time t can be written as

λi(t) = µi +

D∑
j=1

∑

t
j
k
<t

φij(t− tjk).

The φij(t) functions are called kernel functions, and typically one uses expo-
nential kernels where

φij(t) = αijβijexp{−βijt}.

These kernels can be used to describe how events of type j might increase the
intensity of events of type i occurring.

Selected Results

VAR-Results

Modelling the log-returns of the stocks SEB-A.ST, SEB-C.ST and SWED-
A.ST, as VAR processes the current results show that some Granger causal
connections between the time series can be found.

Hawkes-Results

By instead estimating trend reversal points in the time series, it was possible
to extract event sequences for the stock prices. The interactions between
these event sequences were then modelled using multi dimensional Hawkes
processes with exponential kernels.

References
[1]

Elements of Causal Inference
J.Peters, D.Janzing, B.Schölkopf
The MIT Press
2017

[2]
Learning Granger Causality for Hawkes Processes
H.Xu, M. Farajtabar, H.Zha
2018

Planned Work

Most of the research is still to be done in this project, and some ideas are:

• Model expansion: Extend the models to analyse more stocks and over a
longer time period.

• Mass media action as intervention: Include news and mass-media data into
the analysis.

25 B

Toft, Albin
KTH

AI MATH



26 APage

When we decompose a simplicial complex and reassemble it, it might happen that the resulting 
complex has a different homotopy type from the initial one. However, it is sometimes possible to 
understand this change by looking at subcomplexes living in the intersection of the two decomposing 
pieces, the so called obstruction complexes. In this poster it is outlined how the homotopy type of a 
simplicial complex is related to the one of its decompositions. It is also explained with an example 
how to use these ideas to find out the homotopy type of given Vietoris-Rips complexes. This is a joint 
work with Wojciech Chachólski, Martina Scolamiero and Alvin Jin.
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Homotopical decompositions of Vietoris-Rips complexes
Wojciech Chachólski, Alvin Jin, Martina Scolamiero, Francesca Tombari

Department of Mathematics, KTH Royal Institute of Technology, Stockholm, Sweden

1 Introduction

The use of algebraic topology is rapidly growing in understanding data. The
general pipeline of TDA can be summarized by the following:

Dataset - Points with relations between them

⇓
Geometrical structure - Simplicial complex

⇓
Algebraic invariants - Homology

⇓
Features for statistics and machine learning

Figure 1: An example of a Vietoris-Rips complex, given some r > 0.

The computational challenges motivates the following type of question:
given a decomposition of our data set Z = X ∪Y , what information can we
recover about the Vietoris-Rips complex of Z from the component Vietoris-
Rips complexes?

2 A general approach

Let K be a simplicial complex, K0 = X ∪ Y the set of its vertices and A =
X ∩ Y . Let KX = K ∩ X and KY = K ∩ Y . One can easily notice that the
union of KX and KY does not give the initial simplicial complex K . A natural
question that might arise is whether the following inclusion is a homotopy
equivalence or not

KX ∪KY �→ K .

Figure 2: Example of a simplicial complex with high complexity. (Image courtesy of the authors
of arXiv:1608.03520)

A special case of this problem occurs when a pseudo-metric space (Z , d ) is
considered. Fixing r > 0 and a covering of Z consisting in two subspaces
X and Y , we get the inclusion

V Rr (X )∪V Rr (Y ) �→ V Rr (Z ).

a

xy

a

xy

Figure 3: The two figures show a simplicial complex K (on the right) and KX ∪KY (on the left),
where X = {x , a } and Y = {y , a }.

3 Main result

We define the obstruction complex:

F (σ, A) := {µ⊂ A |µ∪σ ∈ K }.

Theorem. Let� be a closed collection of simplicial sets. If, for everyσ
in {σ ∈ K |σ∩X �= � andσ∩Y �= � andσ∩A = �}, the simplicial complex
F (σ, A) satisfies� , then the homotopy fibers of KX ∪KY ⊂ K also satisfy
� .

Corollary. If, for everyσ as above, the simplicial complex F (σ, A) is con-
tractible, then KX ∪KY ⊂ K is a weak equivalence.

We get a long exact sequence in the case when adding one vertex:

Hn(F (x , A))→Hn(KA)→Hn(K )→Hn−1(F (x , A))→Hn−1(KA)

and another when adding two vertices:

Hn(ΣF (x , y , A)→Hn(KX∪KY )→Hn(K )→Hn−1(ΣF (x , y , A)→Hn−1(KX∪KY ).

These sequences give information about the global homology of K with
respect to local information.

4 Examples

Consider the metric space Z = {x1, x2, a1, a2, y }, with the metric such that
every two points of Z has distance 1 except for x1, a2 and x2, a1 having dis-
tance 1.1. Let X = {x1, x2, a1, a2}, Y = {y , a1, a2} be a cover for Z . We can
easily see that V R1(X )∪V R1(Y ) has the homotopy type of S 1, while V R1(Z )
is contractible. This is due to the fact that F (σ, A) is empty, hence non-
contractible, whenσ is the 2-simplex with vertices x1, x2 and y .

x1 a1

a2x2

y

x1 a1

a2x2

y

Figure 4: KX ∪KY on the left and K on the right. Notice that all the triangles in this example are
filled, because K is a clique complex.

The following picture shows an example of a decomposition of Z =
{x1, x2, y1, y2, a11, a12, a21, a22} that has the same homology as the total sim-
plicial complex up to degree 2, but different H3.

Figure 5: The figure represents a 2-dimensional visualization of the Vietoris-Rips complex
V Rr (X )∪V Rr (Y ). V Rr (X ∪ Y ) is obtained by the above simplicial complex adding the simplex
{x1, x2, y1, y2}

The metric is given by:

d (a11, a21) = d (a11, a12) = d (a21, a22) = d (a12, a22) = 4,
d (a11, a22) = d (a12, a21) = 6,
d (x1, a11) = d (y1, a21) = d (x2, a22) = d (y2, a12) = 3,
d (x1, a12) = d (y1, a11) = d (x2, a21) = d (y2, a22) = 5,
d (x1, a21) = d (y1, a22) = d (x2, a12) = d (y2, a11) = 7,
d (x1, a22) = d (y1, a12) = d (x2, a11) = d (y2, a21) = 9,
d (x1, x2) = d (y1, y2) = 6,
d (x1, y1) = d (x1, y2) = d (x2, y1) = d (x2, y2) = 8.

As we have already noticed, the study of this problem for Vietoris-Rips
complexes is actually a consequence of the same problem stated for
generic simplicial complexes. Analogously, the conditions that we put on
a metric space are just a translation of hypothesis on simplicial complexes.

5 References
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The aim of this research is to combine ideas from the performance estimation problem (PEP) fra-
mework in the optimization literature and integral quadratic constraints (IQC) framework from 
the control theory literature into a novel computer-aided automated Lyapunov analysis framework. 
Applications that we are considering are 1) the analysis of the worst-case performance of optimiza-
tion algorithms and iterative algorithms in general and 2) the stability verification of neural network 
controlled systems and model predictive control (MPC) schemes. Moreover, besides the analysis in 1) 
and 2), the framework allows for a systematic approach to optimize algorithm or system performance 
with respect to design parameters.
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The aim of this research is to combine ideas from the performance estimation problem (PEP) framework in the optimization literature
and integral quadratic constraints (IQC) framework from the control theory literature into a novel computer-aided automated Lyapunov
analysis framework. Applications that we are considering are 1) the analysis of the worst-case performance of optimization algorithms
and iterative algorithms in general and 2) the stability verification of neural network-controlled systems and model predictive control
(MPC) schemes. Moreover, besides the analysis in 1) and 2), the framework allows for a systematic approach to optimize algorithm or
system performance with respect to design parameters.

Methods

Motivation & research goals

Integral quadratic constraints (IQC)
The IQC framework, see [4], can be used to analyze the case of
a linear system interconnected in feedback to a, possibly
uncertain, nonlinear system. In particular, [5] noticed that the
IQC framework can be used in the analysis and design of
optimization algorithms and [6] highlighted the close connection
to the PEP framework. Moreover, in [7], tools from the IQC
framework were used to develop a method to certify asymptotic
stability of neural network-controlled systems.

Performance estimation problem (PEP)
The PEP framework, first introduced in [1], provides a systematic
method to analyze the worst-case performance of optimization
algorithms, and iterative algorithms in general. Roughly
speaking, in the optimization algorithm case and in the basic set-
up, we have the following components:
• An appropriate class of functions ℱ with members 𝑓𝑓:ℋ → ℝ ∪

±∞ for some real Hilbert space ℋ.
• Each function 𝑓𝑓 ∈ ℱ has a minimizer 𝑥𝑥∗.
• Some fixed oracle 𝒪𝒪"(𝑥𝑥) that provides information about 𝑓𝑓 at

𝑥𝑥. This could include the function value, and/or the gradient,
etc.

• Some initial iterate 𝑥𝑥# ∈ ℋ.
• A fixed algorithm 𝒜𝒜 that is allotted 𝑁𝑁 iterations such that it

generates a sequence
𝑥𝑥$ = 𝒜𝒜$ 𝑥𝑥#, 𝒪𝒪"
𝑥𝑥% = 𝒜𝒜% 𝑥𝑥#, 𝑥𝑥$, 𝒪𝒪"

⋮
𝑥𝑥& = 𝒜𝒜& 𝑥𝑥#, 𝑥𝑥$, ⋯ , 𝑥𝑥&'$, 𝒪𝒪" .

• An appropriate performance metric 𝒫𝒫 𝑥𝑥∗, 𝑥𝑥#, 𝑥𝑥$, ⋯ , 𝑥𝑥& , 𝒪𝒪" .
Some simple examples include function value suboptimality
𝑓𝑓 𝑥𝑥& − 𝑓𝑓 𝑥𝑥∗ , norm of gradient ∇𝑓𝑓(𝑥𝑥&) and distance to an
optimal solution 𝑥𝑥∗ − 𝑥𝑥& .

The performance estimation problem (PEP) is then to find the
worst-case performance: I.e., maximize

𝒫𝒫 𝑥𝑥∗, 𝑥𝑥#, 𝑥𝑥$, ⋯ , 𝑥𝑥& , 𝒪𝒪"
subject to

𝑓𝑓 ∈ ℱ
𝑥𝑥∗ is optimal for 𝑓𝑓

𝑥𝑥$, ⋯ , 𝑥𝑥& is generated by 𝒜𝒜 with initial point 𝑥𝑥#
with some additional technical assumptions such that the
problem becomes well-posed.

Calculating the worst-case performance is in general an infinite-
dimensional optimization problem. Luckily, there exist standard
techniques in the PEP literature that render the problem tractable
by transforming it into a finite-dimensional semidefinite program
and do so tightly via so called interpolation conditions. See [2] for
additional details. Moreover, the framework allows to select
“optimal” design parameters in the algorithm 𝒜𝒜 by minimizing
the worst-case performance of 𝒜𝒜.

Recently in [3], this framework has been adapted to finding tight
contraction factors of fixed-point operators used in splitting
schemes to solve monotone inclusion problems.
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Current work
We are currently considering optimization algorithms and
splitting schemes that:
• Can be written as a linear system with a nonlinear feedback

given by some operator, in accordance with the IQC
framework.

• The operators involved have interpolation conditions that only
involve quadratic inequalities enabling the use of the PEP
framework.

• A quadratic Lyapunov function ansatz to obtain worst-case
performance guarantees and extract either linear or sublinear
rates of convergence.

Concurrently, within the same framework, we are considering:
• Analyzing the stability of MPC schemes given an iteration

count constraint on the optimization algorithm.
• The stability verification and training of neural network-

controlled systems.
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In our upcoming paper we study the geometry and approximation properties of fully-connected 
ReLU networks. We start by describing the structure of a standard ReLU layer by introducing a con-
venient partition of the input space. Using this structure, we characterize the geometry of the decision 
boundary for shallow networks. We end our analysis by deriving approximation results for deep ReLU 
networks (not presented in this poster).
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In our upcoming paper we study the geometry and approximation properties of fully-connected ReLU networks. More precisely, we
consider networks 𝐹𝐹:ℝ𝑑𝑑 → ℝ of the form 𝐹𝐹 𝑥𝑥 = 𝐿𝐿 ∘ 𝑇𝑇𝑁𝑁 ∘ ⋯∘ 𝑇𝑇1 𝑥𝑥 , where each mapping 𝑇𝑇𝑖𝑖: ℝ𝑑𝑑 → ℝ+

𝑑𝑑 is a ReLU layer and 𝐿𝐿:ℝ𝑑𝑑 → ℝ is an
affine functional. Since ReLU 𝑥𝑥 = max(𝑥𝑥, 0) is a piecewise linear map, the network 𝐹𝐹 defines a piecewise linear function subordinate to
a polygonal partition of the input space. We start by describing the structure of a standard ReLU layer by introducing a convenient
partition of the input space. Using this structure, we characterize the geometry of the decision boundary Γ = {𝑥𝑥 ∈ ℝ𝑑𝑑: 𝐹𝐹 𝑥𝑥 = 0} for
shallow networks. We end our analysis by deriving approximation results for deep ReLU networks (not presented in this poster).

Structure of ReLU Layers

Abstract

A shallow network has the form 𝐹𝐹 𝑥𝑥 = 𝐿𝐿 ∘ 𝑇𝑇(𝑥𝑥) where 𝐿𝐿:ℝ𝑑𝑑 → ℝ
is an affine functional with a hyperplane ෠𝑃𝑃 as its kernel. The
decision boundary of 𝐹𝐹 can be expressed as

Γ = 𝑇𝑇−1 ෠𝑃𝑃 ∩ ℝ+
𝑑𝑑 = ڂ መ𝑆𝑆𝑰𝑰∈𝜕𝜕 መ𝑆𝑆 𝑇𝑇−1 ෠𝑃𝑃 ∩ መ𝑆𝑆𝑰𝑰

Using the structure of 𝑇𝑇, we can expand each set in the union as
𝑇𝑇−1 ෠𝑃𝑃 ∩ መ𝑆𝑆(𝐽𝐽,∅,𝐼𝐼∖𝐽𝐽) = {𝑥𝑥 − σ𝑖𝑖∈𝐼𝐼∖J 𝛼𝛼𝑖𝑖 𝑎𝑎𝑖𝑖∗: 𝛼𝛼𝑖𝑖 ≥ 0, 𝑥𝑥 ∈ 𝑃𝑃 ∩ 𝑆𝑆(𝐽𝐽,∅,𝐼𝐼∖𝐽𝐽)}

where 𝑃𝑃 is the preimage of ෠𝑃𝑃 under the affine map 𝑥𝑥 ↦ 𝐴𝐴𝐴𝐴 + 𝑏𝑏.
Thus, each non-empty intersection ෠𝑃𝑃 ∩ መ𝑆𝑆 𝐽𝐽,∅,𝐼𝐼∖𝐽𝐽 will generate a
unique linear piece of Γ spanned by a subset of the dual vectors.
Moreover, Γ is completely determined by the preimages
𝑇𝑇−1 ෠𝑃𝑃 ∩ መ𝑆𝑆(𝐼𝐼∖{𝑖𝑖},∅,{𝑖𝑖}) , 𝑖𝑖 ∈ 𝐼𝐼, the intersections of ෠𝑃𝑃 with the 𝑑𝑑 − 1
dimensional faces in 𝜕𝜕 መ𝑆𝑆. The remaining pieces are essentially
linear transitions between these parts. If 𝑛𝑛 is a unit normal to 𝑃𝑃,
then the signs of 𝑛𝑛 ⋅ 𝑎𝑎𝑖𝑖∗ indicate how Γ curves since the dual
vectors are tangents to the pieces 𝑇𝑇−1 ෠𝑃𝑃 ∩ መ𝑆𝑆(𝐼𝐼∖{𝑖𝑖},∅,{𝑖𝑖}) and 𝑛𝑛 is
normal to the central piece 𝑃𝑃 ∩ 𝑆𝑆(𝐼𝐼,∅,∅) to which all other pieces
are connected. If the hyperplane ෠𝑃𝑃 is in general position, that is,
not parallel with any of the standard coordinate axes and 0 ∉ ෠𝑃𝑃
then there are 𝑡𝑡𝑖𝑖 ∈ ℝ ∖ {0} such that 𝑡𝑡𝑖𝑖𝑒𝑒𝑖𝑖 ∈ ෠𝑃𝑃 for each 𝑖𝑖 ∈ 𝐼𝐼. It
turns out that sgn(𝑡𝑡𝑖𝑖) = sgn(𝑛𝑛 ⋅ 𝑎𝑎𝑖𝑖∗) , thus the values {𝑡𝑡𝑖𝑖: 𝑖𝑖 ∈ 𝐼𝐼}
determine how Γ curves.
We show that the number of linear pieces of Γ is 2𝑑𝑑 − 2𝑚𝑚 where
𝑚𝑚 = |{𝑖𝑖 ∈ 𝐼𝐼: 𝑡𝑡𝑖𝑖 < 0: }|. Further, we show that for a shallow ReLU
network 𝐹𝐹:ℝ𝑑𝑑 → ℝ each possible decision boundary can be
obtained by applying an invertible affine map to one of 𝑑𝑑
canonical decision boundaries. Hence, it suffices to understand
the properties of these canonical decision boundaries. Figure 3
shows the canonical decision boundaries when 𝑑𝑑 = 3.

Decision Boundaries

A ReLU layer is a mapping 𝑇𝑇:ℝ𝑑𝑑 → ℝ+
𝑑𝑑 of the form

𝑇𝑇 𝑥𝑥 = ReLU 𝐴𝐴𝐴𝐴 + 𝑏𝑏
where 𝐴𝐴 ∈ ℝ𝑑𝑑×𝑑𝑑 is a matrix, assumed to have full rank, with rows
𝑎𝑎𝑖𝑖 ∈ ℝ𝑑𝑑 and 𝑏𝑏 ∈ ℝ𝑑𝑑 is a vector with elements 𝑏𝑏𝑖𝑖 ∈ ℝ. To describe
the action of 𝑇𝑇, we introduce a set of dual vectors {𝑎𝑎𝑖𝑖∗: 𝑖𝑖 ∈ 𝐼𝐼},
where 𝐼𝐼 = {1,… , 𝑑𝑑} , defined by the equation 𝑎𝑎𝑖𝑖∗ ⋅ 𝑎𝑎𝑗𝑗 = 𝛿𝛿𝑖𝑖𝑖𝑖 . It
follows that these vectors constitute a basis of ℝ𝑑𝑑 which will be
convenient when analyzing the structure of 𝑇𝑇.
To that end, consider a partition 𝐼𝐼+ ∪ 𝐼𝐼− ∪ 𝐼𝐼0 of the index set 𝐼𝐼,
denoted by the three-tuple (𝐼𝐼+, 𝐼𝐼−, 𝐼𝐼0). Some of the sets may be
empty as long as their union is 𝐼𝐼. For each such partition, we
define

𝑆𝑆 𝐼𝐼+,𝐼𝐼−,𝐼𝐼0 = 𝑥𝑥0 + σ𝑖𝑖∈𝐼𝐼+ 𝛼𝛼𝑖𝑖𝑎𝑎𝑖𝑖
∗ − σ𝑖𝑖∈𝐼𝐼− 𝛼𝛼𝑖𝑖𝑎𝑎𝑖𝑖

∗ : 𝛼𝛼𝑖𝑖 > 0 ⊂ ℝ𝑑𝑑

where 𝑥𝑥0 is the unique solution to 𝐴𝐴𝐴𝐴 = −𝑏𝑏. By construction,
dim 𝑆𝑆 𝐼𝐼+,𝐼𝐼−,𝐼𝐼0 = 𝐼𝐼+ ∪ 𝐼𝐼− and if ℐ is the set of all such three-
tuples, the family 𝒮𝒮 = {𝑆𝑆𝑰𝑰: 𝑰𝑰 ∈ ℐ} is a partition of ℝ𝑑𝑑 with pairwise
disjoint sets. In the special case when 𝐴𝐴 = 𝐼𝐼𝑑𝑑 (𝐼𝐼𝑑𝑑 being the
identity matrix) and 𝑏𝑏 = 0, the sets reduce to

መ𝑆𝑆 𝐼𝐼+,𝐼𝐼−,𝐼𝐼0 = 0 + σ𝑖𝑖∈𝐼𝐼+ 𝛼𝛼𝑖𝑖𝑒𝑒𝑖𝑖 − σ𝑖𝑖∈𝐼𝐼− 𝛼𝛼𝑖𝑖𝑒𝑒𝑖𝑖 : 𝛼𝛼𝑖𝑖 > 0 ⊂ ℝ𝑑𝑑

where 𝑒𝑒𝑖𝑖 is the 𝑖𝑖 :th Euclidean basis vector. We call the
corresponding partition መ𝒮𝒮. Examples of the families መ𝒮𝒮 and 𝒮𝒮 are
shown in Figure 1.

Figure 1. A visualization of the families መ𝒮𝒮 (left) and 𝒮𝒮 (right) when 𝑑𝑑 = 3. Both families partition ℝ3

in eight 3-dimensional sets (the transparent volumes), twelve 2-dimensional sets (the green
faces), six 1-dimensional sets (the blue lines) and one 0-dimensional set (the black point in the
center). The figure only shows slices of the sets and we have also intentionally added space
between the sets for illustrative purposes.

Note, ℝ+
𝑑𝑑 = 𝑇𝑇(ℝ𝑑𝑑) can be partitioned as 𝜕𝜕 መ𝑆𝑆 = መ𝑆𝑆 𝐽𝐽,∅,𝐼𝐼∖𝐽𝐽 : 𝐽𝐽 ⊆ 𝐼𝐼

and it follows that the image of a set 𝑆𝑆 𝐼𝐼+,𝐼𝐼−,𝐼𝐼0 ∈ 𝒮𝒮 under 𝑇𝑇 is
exactly

𝑇𝑇 𝑆𝑆 𝐼𝐼+,𝐼𝐼−,𝐼𝐼0 = መ𝑆𝑆 𝐼𝐼+,∅,𝐼𝐼0∪𝐼𝐼− ∈ 𝜕𝜕 መ𝑆𝑆
Thus, 𝑇𝑇 𝑆𝑆 𝐼𝐼+,𝐼𝐼−,𝐼𝐼0 = 𝑇𝑇(𝑆𝑆(𝐽𝐽+,𝐽𝐽−,𝐽𝐽0)) whenever 𝐼𝐼+ = 𝐽𝐽+ and 𝑇𝑇
reduces to the affine map 𝑥𝑥 ↦ 𝐴𝐴𝐴𝐴 + 𝑏𝑏 on the closure ҧ𝑆𝑆 𝐼𝐼,∅,∅ .
Since dim 𝑇𝑇 𝑆𝑆 𝐼𝐼+,𝐼𝐼−,𝐼𝐼0 ≤ dim 𝑆𝑆 𝐼𝐼+,𝐼𝐼−,𝐼𝐼0 it is clear that 𝑇𝑇 has
contracting properties. If 𝜔𝜔 is the preimage under the affine map
of a set ෝ𝜔𝜔 ⊂ መ𝑆𝑆(𝐽𝐽,∅,𝐼𝐼∖𝐽𝐽) then

𝑇𝑇−1 ෝ𝜔𝜔 = 𝑥𝑥 − σ𝑖𝑖∈𝐼𝐼∖J 𝛼𝛼𝑖𝑖𝑎𝑎𝑖𝑖∗ : 𝛼𝛼𝑖𝑖 ≥ 0, 𝑥𝑥 ∈ 𝜔𝜔 ∩ 𝑆𝑆 𝐽𝐽,∅,𝐼𝐼∖𝐽𝐽
Examples of preimages can be seen in Figure 2.

Figure 2. Four different subsets of ℝ+
3 are shown (left) together with their corresponding

preimages (right) under a ReLU layer 𝑇𝑇. Preimages of subsets intersecting the boundary 𝜕𝜕ℝ+
3 will

be spanned by a subset of the dual basis vectors.

Figure 3. An illustration of the 3 canonical decision boundaries for a shallow network 𝐹𝐹:ℝ3 → ℝ.
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Runge--Kutta--Chebyshev (RKC) methods are  used to solve numerical differential equations. They 
have the advantage of being explicit methods with large stability regions. We propose a stochastic 
optimization scheme for machine learning problems based on the Runge-Kutta-Chebshev methods.

A Stochastic Runge-Kutta Optimization Algorithm
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Runge–Kutta–Chebyshev
methods

Runge–Kutta–Chebyshev (RKC) methods are

methods used to solve numerical differential equa-

tions. They have the advantage of being explicit

methods with large stability regions.

50 0

5

5

Stability region of RKC polynomials

In the plot above we see the stability region of an

RKC method with 5 stages and that of the explicit

Euler scheme (in bright yellow).

Gradient flow & optimization

We can view the gradient descent algorithm

as the explicit Euler scheme applied to the gradi-

ent flow equation

ẇ = −∇F (w).

As we saw above, the explicit Euler scheme (and

thus the gradient descent) has a small stability re-

gion which puts a severe stepsize restricition on

it.

Stochastic
Runge–Kutta–Chebyshev

descent

We here present a stochastic optimization algo-

rithm that make use of the RKC methods for min-

imizing a cost function F :

•Choose an initial iterate w1 and a sequence of

jointly independent random variables {ξk}. For

k = 1, 2, . . .

•Set wk0 ← wk and recieve a stochastic approxi-

mation g(ξk, ·) to ∇F (·).
•Set wk1 = wk0 + µ̃1αkg(ξk, wk0).

For j = 2, . . . , s.

–Setwkj = µjwk,j−1+νjwk,j−2+µ̃jαkg(ξk, wk,j−1).

•Set the new iterate as wk+1 ← wks.

Under various standard assumptions (such as

strong convexity of the objective function F ) we

can show that the sequence {wk}k≥1 generetated

by the SRKCD algorithm converges sub-linearly

in expectation. Under the assumption that F is

twice differentiable we can show that the algorithm

converges in expectation to a stationary point in

the non-convex case:

lim
k→∞

E‖∇F (wk)‖2 = 0.

Numerical experiments

Below we see the results from testing the SRKCD-

scheme with 2 stages on a VGG-network using the

Cifar-10 dataset.
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Poster made for WASP winter conference 2022. (Joint work with Tony Stillfjord.)
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Two challenging aspects of machine learning are label contamination in training data in supervised 
classification tasks and bias reduction in classical regularisation settings. Our research focuses on a 
general strategy to non-interactively deal with both problems by expanding the loss function with 
newly introduced weights. In the first article, we focus on reducing the impact of contaminated labels 
in training data by localising incorrect data points and reducing their contribution to the loss func-
tion. In the second article, we focus on reducing the added bias introduced by classical regularisation 
methods, like Lasso and Ridge, in a linear regression setting. By doing this, we can, under certain 
circumstances, keep key properties from the original regularisation penalty and reduce the bias giving 
us consistent estimators. This leads to the regularisation methods ”entropy weighted Lasso” (EWL) 
and ”entropy weighted Ridge” (EWR).

Regularised Weights in Statistical Models: A General Strategy for 
Bias Reduction and Increased Stability in Overparameterised Settings
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Regularised Weights in Statistical Models
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Introduction
Two challenging aspects of machine learning are label contamination in training data in supervised classification tasks and
bias reduction in classical regularisation settings. Our research focuses on a general strategy to non-interactively deal with
both problems. The material and experiments are distributed as follows:

1. (Article 1) Reduce the impact of contaminated labels in training data by localising incorrect data points and reducing
their contribution to the loss function in a deep convolution neural network setting.

2. (Article 2) Reduce the added bias introduced by classical regularisation methods, like Lasso and Ridge, in a linear
regression setting. This leads to the regularisation methods "entropy weighted Lasso" (EWL) and "entropy weighted
Ridge" (EWR).

Our approach
Our approach is to expand the loss function with more parameters ω that can be considered weights of different terms. In
the presence of label noise, the weights can be put on the data loss terms, and for bias reduction, they can be put on the
regularisation terms. To find the "optimal" weight setting, we increase the minimisation task to also include the weights ω
with an extra regularisation term g̃(ω) =

∑
i (ωi log(ωi) − ωi + 1)

Using weights to find contaminated labels

θ̃, ω̃ = arg min
θ,ω : w̄c=ρc,∀c

∑
i

ωiℓ(Xi, Yi; θ) + λg(θ) + αg̃(ω)

θ̃ = arg min
θ

−α
∑

k

ρk|Ck| log
( ∑

i∈Ck

e− ℓ(xi,yi;θ)
α

)
+ λg(θ)

Results (contaminated labels)
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Figure 1: Histograms of the observation weight distributions
of both correct and mislabelled training data.

Figure 2: Validation accuracy during training in four differ-
ent noise settings.

Using weights to reduce bias

θ̃, ω̃ = arg min
θ,ω

1
2 ||Y − Xθ||22 + λ

∑
i

ωig(θi) + γg̃(ω)

θ̃ = arg min
θ

1
2 ||Y − Xθ||22 + γ

∑
i

(1 − e− λ
γ g(θi))

Results (bias reduction)

Figure 3: The average L2 distance between the estimated
parameters β̂ and the true parameters β (left) and the mean
squared error of predictions on test data (right) over 100
runs as functions of the signal to noise ratio (SNR) for nine
models on uncorrelated covariates.
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