Learning Dynamic Algorithms for Automated Planning

Jendrik Seipp January, 2022

Linköping University

About me

- PhD and postdoc in Basel, Switzerland
- since January 2021: assistant professor in Al at LiU
- automated planning and machine learning

Automated planning

- find action sequence that achieves goal
- classical planning: deterministic, fully observable, domain-independent
- any plan or cheapest plan

Example task

- actions cost 1
- breadth-first search?

Heuristic search

Heuristic search

Heuristic search

• A* with admissible heuristic \rightarrow optimal plan

How to create a heuristic?

- simplify problem (remove constraints)
- solve simplified problem
- use solution cost as estimate

How to create a heuristic?

- simplify problem (remove constraints)
- solve simplified problem
- use solution cost as estimate
- → abstraction heuristics

Example abstraction (projection)

Cartesian abstraction

Merge-and-shrink abstraction

How to build an abstraction?

- huge design space:
 - · which states to combine?
 - how to decompose task?
- complex algorithms

How to build an abstraction?

- huge design space:
 - which states to combine?
 - how to decompose task?
- complex algorithms
- → learn algorithms automatically
 - supervised learning
 - reinforcement learning

General research goal

Let planners adapt to tasks dynamically

- heuristics
- search algorithms
- pruning

Contact: jendrik.seipp@liu.se