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Agenda

The aim of this presentation is to introduce computer vision with
applications, motivate and define basic concepts of algebraic geometry, and
finally I will talk about a current project.

This talk is divided into three parts:

1. Computer vision, applications and reconstruction problems,

2. Introduction to algebraic geometry,

3. Algebraic vision, my current project.
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Part 1 – Computer Vision

Figure: Hal 9000, the artificial intelligence from 2001: A Space Oddysey (1968).
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What Is Computer Vision?

• Computer vision is an umbrella term. It is essentially the study of how
computers can learn information from images (and videos.) This is the
perceptual component of intelligence. It seeks to understand and
automate tasks that the human visual system can do.

• Examples of tasks in computer vision:

– Reading hand-written text, number plates (convolutional neural
networks,)
– Self-driving cars,
– Deep-fakes, making faces older or younger in films,
– Surveillance, monitoring pools for drowing people,
– Object recognition for automated check out lanes,
– Increasing resolution of pictures and denoising (auto-encoders,)
– Reconstruction of 3D objects from images.

•Mathematics: The mathematical models and theory. Description and
classification of problems. Statistics: Estimations of accuracy.
Engineering: Techniques and algorithms.
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Reconstructing 3D models

•Reconstruction of 3D objects from images is the main focus of this talk
and it has several applications:

– Automated construction of 3D models of cities from aerial
photograps. This is used by cityplanners and moviemakers,
– Better spacial understanding for self-driving vehicles,
– Modelling humans and objects, used for films and videogames.

• The reconstruction pipeline works as follows:

– Input a number of images,
– Find points and lines that two cameras have incommon,
– Solve the reconstruction problem with algebra,
– Output a 3D model.

•Note that there are two flavours of reconstruction problems.

– Either we know the positions of the cameras and their
orientation (self-driving vehicles,)
– Or we don’t have any information about the cameras (pictures
from the internet.)
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Reconstructing 3D models

Figure: The reconstruction pipeline.
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Reconstructing 3D models

Figure: Different algebraic reconstruction problems. The number of complex
solutions are listed for generic positions (up to rotation and translation.)
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Reconstructing 3D models

Figure: Point reconstruction of the colloseum using pictures found on the internet
taken by tourists’ smartphones. Also the camera position (and their directions) have
been recovered. Taken from Reconstructing Rome, by Agarwal, Furukawa et. al.
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Reconstructing 3D models

Figure: Finished 3D models. The pictures used were taken by tourists. Taken from
Reconstructing Rome, by Agarwal, Furukawa et. al.
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Types of Cameras

• There are many types of cameras, and in some cases the type really
matters in applications:

– Pinhole camera: The “easiest” kind, takes the whole picture at
once. Well-understood from a mathematical perspective,
– Rolling shutter camera: Common in smartphones, scans each
line of the image one by one,
– Pushbroom camera: Common in satellites, scans a specific line
over and over (so that if stands still it scans the same line
repeatedly.)

• The difference between the pinhole camera and rolling shutter
camera becomes relevant when the camera is moving. For a moving
rolling shutter camera, lines can become conics. Visualization.

https://twitter.com/Physicsastronmy/status/1436645783475040264
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Types of Cameras

Figure: Picture taken with a rolling shutter camera shows bent rotor blades. In our 3D
reconstruction, we want the rotor blades to be straight.



Part 2 – Algebraic Geometry

Figure: The family of rose curves.
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Motivation

• Algebraic geometry is the study of solutions to polynomial equations.
For example,

V = {(x, y) ∈ K2 : x2 + y2 = 1},

where K is a field (usually Q,R or C.)

•Observe that C is an algebraically closed field (due to the
fundamental theorem of algebra,) which means that its geometry is
“nice” and “simple.” The real numbers R model the real world and
computers can symbolically work with rational numbers Q.

• This field can be thought of as a generalization of linear algebra,
which is the study of the solution set of linear equations.

• The world can be understood through polynomials! In particular, real
valued functions can in a broad sense be approximated by
polynomials, via Taylor approximation or Stone-Weierstrass theorem.
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Geometry vs. Algebra

• Consider the ring of polynomials K[x1, . . . , xn] (K = Q,R,C.) An
ideal I of this ring is a subring such that f · I ⊆ I for any polynomial
f ∈ K[x1, . . . , xn]. The ideal generated by polynomials f1, . . . , fk is

〈f1, . . . , fk〉 :=
{ k∑

i=1

aifi : ai ∈ K[x1, . . . , xn]
}
.

• An algebraic set (variety) V(I) is the set of points in Kn for which all
polynomials in I vanish. Key idea: If f1, . . . , fk generate I, then

V(I) = {x ∈ Kn : f1(x) = · · · = fn(x) = 0}.

A computer understands algebraic geometry (an ideal) as a set of
finitely many generators:

Theorem (Hilbert’s Basis Theorem)

If K = Q,R,C then any ideal of K[x1, . . . , xn] is finitely generatored.
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Projective Geometry

• Projective geometry was “first studied” by painters long ago who
wanted to draw proportions of structures and buildings in a realistic
way.
• Key idea: Compact sets have nice properties that are nice to work
with. Sets as Rn and Cn are non-compact, but this can be fixed via
projectivization.

• For a field K, we define the projective space

Pn−1
K := {L ⊆ Kn : L is 1− dim linear subspace} = (Kn \ {0})/ ∼,

where x, y ∈ Kn are related by∼ if they differ by a non-zero constant.
Its elements are written (x1 : · · · : xn), for some (x1, . . . , xn) ∈ Kn that
spans the line.

• Key idea: Just as algebraic geometry becomes easier over C instead of
R, it also becomes easier in projective space compared to the usual
affine space.

•Human vision works by identifying lines going through the center of
the eye with points.
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Grassmannians

•One example of a common algebraic construction is the
Grassmanian, defined as

Gr(k,Rn) := {L ⊆ Rn : L linear space of dim k}.

In terms of projective space, we have a natural correspondence

Gr(k − 1,Pn−1
R ) ∼= Gr(k,Rn).

• Key idea: These can be viewed as algebraic sets. This allows us to
work efficiently with linear spaces, viewing them as points.

• For example, Gr(1,P3) ∼= Gr(2,R4) lie in P5 by the following Plücker
embedding sending the space spanned by a, b, represented as the
matrix [

a1 a2 a3 a4

b1 b2 b3 b4

]
to the vector of the six 2× 2 minors of this matrix in P5. This is a
natural bijection.
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Part 3 – Algebraic Vision

Figure: Different algebraic reconstruction problems with finitely many solutions.
Taken from PLMP - Point-Line Minimal Problems in Complete Multi-View Visibility,
by Kohn et. al.
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Modelling Cameras Mathematically

• A camera is modelled mathematically as a 3× 4 matrix C of rank 3,
projecting points (or lines) in P3 to the camera image plane P2. The focus
(center) of the camera is equal to the kernel of C.

• Let C(1), . . . , C(m) be m camera matrices with different foci. We define the
joint camera map

ΦC : P399K(P2)m, X 7→ (C(1)X, . . . , C(m)X),

sending a point in 3-space to its point images in the m cameras.

• Similarly, we have the alternative setting

ΥC : Gr(1,P3)99KGr(1,P2)m, L 7→ (C(1)L, . . . , C(m)L),

sending a line in 3-space to its line images in the m cameras.
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Multi-View Varieties

• The reconstruction problem becomes easier when we know the camera
specifications, i.e. we know the matrices C(1), . . . , C(m). Reconstructing in
this case becomes an exercise in linear algebra, after the image points (or
lines) have been fitted into the multi-view variety.

• Key idea: It’s difficult for a computer to work with the joint images ΦC(P3)
and ΥC(Gr(1,P3)). Instead, we consider the Zariski closure of these images,
writtenMC in the point case and LC in the line case. These are called
multi-view varieties. The Zariski closure of a set A is the smallest algebraic
set containing A.

• Any data comes with noise and we therefore fit them into the multi-view
varieties by finding the closest point to it in Euclidean distance.



Introduction I Part 1 – Computer Vision II Part 2 – Algebraic Geometry III Part 3 – Algebraic Vision Outro

Multi-View Varieties

• The reconstruction problem becomes easier when we know the camera
specifications, i.e. we know the matrices C(1), . . . , C(m). Reconstructing in
this case becomes an exercise in linear algebra, after the image points (or
lines) have been fitted into the multi-view variety.

• Key idea: It’s difficult for a computer to work with the joint images ΦC(P3)
and ΥC(Gr(1,P3)). Instead, we consider the Zariski closure of these images,
writtenMC in the point case and LC in the line case. These are called
multi-view varieties. The Zariski closure of a set A is the smallest algebraic
set containing A.

• Any data comes with noise and we therefore fit them into the multi-view
varieties by finding the closest point to it in Euclidean distance.



Introduction I Part 1 – Computer Vision II Part 2 – Algebraic Geometry III Part 3 – Algebraic Vision Outro

Multi-View Varieties

• The reconstruction problem becomes easier when we know the camera
specifications, i.e. we know the matrices C(1), . . . , C(m). Reconstructing in
this case becomes an exercise in linear algebra, after the image points (or
lines) have been fitted into the multi-view variety.

• Key idea: It’s difficult for a computer to work with the joint images ΦC(P3)
and ΥC(Gr(1,P3)). Instead, we consider the Zariski closure of these images,
writtenMC in the point case and LC in the line case. These are called
multi-view varieties. The Zariski closure of a set A is the smallest algebraic
set containing A.

• Any data comes with noise and we therefore fit them into the multi-view
varieties by finding the closest point to it in Euclidean distance.



Introduction I Part 1 – Computer Vision II Part 2 – Algebraic Geometry III Part 3 – Algebraic Vision Outro

Multi-View Varieties

• In the generic case (the cameras are chosen randomly for instance,) we can
write the ideals defining the multi-view varieties. Geometrically, they are
explained as follows:

Theorem
In the point case, the variety consists of the image points whose
back-projected lines in P3 meet in a point. In the line case, the variety conists
of the image lines whose back-projected planes in P3 meet in a line.

• Practicioners are interested in the robustness of the two approaches.
There is numerical evidence that the line approach is more stable. We want
algebraic evidence for this.

• In this direction, the Euclidean distance degree of a variety V ⊆ Rn is the
number of complex critical points of

‖v − x‖22,

over v ∈ V and generic x ∈ Rn (randomly chosen.)
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Thank you for listening!

• A few relevant sources:

– S. Agarwal, Y. Furukawa et.al. Reconstructing Rome.
– R. Szeliski. Computer Vision, Algorithms and Applications.
– M. Trager, M. Hebert, J. Ponce. The joint image handbook.
– J. Kileel. Algebraic Geometry for Computer Vision.
– K. Kohn et. al. PLMP - Point-Line Minimal Problems in Complete
Multi-View Visibility.


