| Introduction | Ι | Part 1 – Computer Vision | II | Part 2 – Algebraic Geometry | III | Part 3 – Algebraic Vision | Outro |
|--------------|---|--------------------------|----|-----------------------------|-----|---------------------------|-------|
| 0            | 0 | 0000000                  | 0  | 0000                        | 0   | 000                       | 0     |

# Reconstruction Problems in Computer Vision Applications and Algebra

#### Felix Rydell

#### KTH Stockholm



| Introduction | I | Part 1 – Computer Vision | II | Part 2 – Algebraic Geometry | III | Part 3 – Algebraic Vision | Outro |
|--------------|---|--------------------------|----|-----------------------------|-----|---------------------------|-------|
| •            | O | 00000000                 | O  | 0000                        | O   | 000                       | O     |
|              |   |                          |    | Agenda                      |     |                           |       |

This talk is divided into three parts:

1. Computer vision, applications and reconstruction problems,

2. Introduction to algebraic geometry,

3. Algebraic vision, my current project.

| Introduction | I | Part 1 – Computer Vision | II | Part 2 – Algebraic Geometry | III | Part 3 – Algebraic Vision | Outro |
|--------------|---|--------------------------|----|-----------------------------|-----|---------------------------|-------|
| •            | O | 00000000                 | O  | 0000                        | O   | 000                       | O     |
|              |   |                          |    | Agenda                      |     |                           |       |

This talk is divided into three parts:

1. Computer vision, applications and reconstruction problems,

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ のへぐ

2. Introduction to algebraic geometry,

3. Algebraic vision, my current project.

| Introduction | I | Part 1 – Computer Vision | II | Part 2 – Algebraic Geometry | III | Part 3 – Algebraic Vision | Outro |
|--------------|---|--------------------------|----|-----------------------------|-----|---------------------------|-------|
| •            | O | 00000000                 | O  | 0000                        | O   | 000                       | O     |
|              |   |                          |    | Agenda                      |     |                           |       |

This talk is divided into three parts:

1. Computer vision, applications and reconstruction problems,

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ のへぐ

- 2. Introduction to algebraic geometry,
- 3. Algebraic vision, my current project.

| Introduction | I | Part 1 – Computer Vision | II | Part 2 – Algebraic Geometry | III | Part 3 – Algebraic Vision | Outro |
|--------------|---|--------------------------|----|-----------------------------|-----|---------------------------|-------|
| •            | O | 00000000                 | O  | 0000                        | O   | 000                       | O     |
|              |   |                          |    | Agenda                      |     |                           |       |

This talk is divided into three parts:

1. Computer vision, applications and reconstruction problems,

(ロ) (型) (E) (E) (E) (O)(()

- 2. Introduction to algebraic geometry,
- 3. Algebraic vision, my current project.

| Introduction | I | Part 1 – Computer Vision | II | Part 2 – Algebraic Geometry | III | Part 3 – Algebraic Vision | Outro |
|--------------|---|--------------------------|----|-----------------------------|-----|---------------------------|-------|
| •            | O | 00000000                 | O  | 0000                        | O   | 000                       | O     |
|              |   |                          |    | Agenda                      |     |                           |       |

This talk is divided into three parts:

1. Computer vision, applications and reconstruction problems,

(ロ) (型) (E) (E) (E) (O)(()

- 2. Introduction to algebraic geometry,
- 3. Algebraic vision, my current project.

# Part 1 – Computer Vision



Figure: Hal 9000, the artificial intelligence from 2001: A Space Oddysey (1968).

(中) (종) (종) (종) (종) (종)

| Introduction | Ι | Part 1 – Computer Vision | II | Part 2 – Algebraic Geometry | III | Part 3 – Algebraic Vision | Outro |
|--------------|---|--------------------------|----|-----------------------------|-----|---------------------------|-------|
| 0            | 0 | 0000000                  | 0  | 0000                        | 0   | 000                       | 0     |

• Computer vision is an umbrella term. It is essentially the study of how computers can learn information from images (and videos.) This is the *perceptual* component of intelligence. It seeks to understand and automate tasks that the human visual system can do.

- Examples of tasks in computer vision:
  - Reading hand-written text, number plates (convolutional neural networks,)
  - Self-driving cars,
  - Deep-fakes, making faces older or younger in films,
  - Surveillance, monitoring pools for drowing people,
  - Object recognition for automated check out lanes,
  - Increasing resolution of pictures and denoising (auto-encoders,)
  - Reconstruction of 3D objects from images.

• Mathematics: The mathematical models and theory. Description and classification of problems. Statistics: Estimations of accuracy. Engineering: Techniques and algorithms.

| Introduction | Ι | Part 1 – Computer Vision | II | Part 2 – Algebraic Geometry | III | Part 3 – Algebraic Vision | Outro |
|--------------|---|--------------------------|----|-----------------------------|-----|---------------------------|-------|
| 0            | 0 | 0000000                  | 0  | 0000                        | 0   | 000                       | 0     |

• *Computer vision* is an umbrella term. It is essentially the study of how computers can learn information from images (and videos.) This is the *perceptual* component of intelligence. It seeks to understand and automate tasks that the human visual system can do.

### • Examples of tasks in computer vision:

- Reading hand-written text, number plates (convolutional neural networks,)
- Self-driving cars,
- Deep-fakes, making faces older or younger in films,
- Surveillance, monitoring pools for drowing people,
- Object recognition for automated check out lanes,
- Increasing resolution of pictures and denoising (auto-encoders,)
- Reconstruction of 3D objects from images.

• Mathematics: The mathematical models and theory. Description and classification of problems. Statistics: Estimations of accuracy. Engineering: Techniques and algorithms.

| Introduction | Ι | Part 1 – Computer Vision | II | Part 2 – Algebraic Geometry | III | Part 3 – Algebraic Vision | Outro |
|--------------|---|--------------------------|----|-----------------------------|-----|---------------------------|-------|
| 0            | 0 | 0000000                  | 0  | 0000                        | 0   | 000                       | 0     |

• *Computer vision* is an umbrella term. It is essentially the study of how computers can learn information from images (and videos.) This is the *perceptual* component of intelligence. It seeks to understand and automate tasks that the human visual system can do.

- Examples of tasks in computer vision:
  - Reading hand-written text, number plates (convolutional neural networks,)
  - Self-driving cars,
  - Deep-fakes, making faces older or younger in films,
  - Surveillance, monitoring pools for drowing people,
  - Object recognition for automated check out lanes,
  - Increasing resolution of pictures and denoising (auto-encoders,)
  - Reconstruction of 3D objects from images.

• Mathematics: The mathematical models and theory. Description and classification of problems. Statistics: Estimations of accuracy. Engineering: Techniques and algorithms.

| Introduction | Ι | Part 1 – Computer Vision | II | Part 2 – Algebraic Geometry | III | Part 3 – Algebraic Vision | Outro |
|--------------|---|--------------------------|----|-----------------------------|-----|---------------------------|-------|
| 0            | 0 | 0000000                  | 0  | 0000                        | 0   | 000                       | 0     |

• *Computer vision* is an umbrella term. It is essentially the study of how computers can learn information from images (and videos.) This is the *perceptual* component of intelligence. It seeks to understand and automate tasks that the human visual system can do.

- Examples of tasks in computer vision:
  - Reading hand-written text, number plates (convolutional neural networks,)
  - Self-driving cars,
  - Deep-fakes, making faces older or younger in films,
  - Surveillance, monitoring pools for drowing people,
  - Object recognition for automated check out lanes,
  - Increasing resolution of pictures and denoising (auto-encoders,)
  - Reconstruction of 3D objects from images.

• Mathematics: The mathematical models and theory. Description and classification of problems. Statistics: Estimations of accuracy. Engineering: Techniques and algorithms.

| Introduction | Ι | Part 1 – Computer Vision | II | Part 2 – Algebraic Geometry | III | Part 3 – Algebraic Vision | Outro |
|--------------|---|--------------------------|----|-----------------------------|-----|---------------------------|-------|
| 0            | 0 | 0000000                  | 0  | 0000                        | 0   | 000                       | 0     |

• *Computer vision* is an umbrella term. It is essentially the study of how computers can learn information from images (and videos.) This is the *perceptual* component of intelligence. It seeks to understand and automate tasks that the human visual system can do.

- Examples of tasks in computer vision:
  - Reading hand-written text, number plates (convolutional neural networks,)
  - Self-driving cars,
  - Deep-fakes, making faces older or younger in films,
  - Surveillance, monitoring pools for drowing people,
  - Object recognition for automated check out lanes,
  - Increasing resolution of pictures and denoising (auto-encoders,)
  - Reconstruction of 3D objects from images.

• Mathematics: The mathematical models and theory. Description and classification of problems. Statistics: Estimations of accuracy. Engineering: Techniques and algorithms.

| Introduction | Ι | Part 1 – Computer Vision | II | Part 2 – Algebraic Geometry | III | Part 3 – Algebraic Vision | Outro |
|--------------|---|--------------------------|----|-----------------------------|-----|---------------------------|-------|
| 0            | 0 | 0000000                  | 0  | 0000                        | 0   | 000                       | 0     |

• *Computer vision* is an umbrella term. It is essentially the study of how computers can learn information from images (and videos.) This is the *perceptual* component of intelligence. It seeks to understand and automate tasks that the human visual system can do.

- Examples of tasks in computer vision:
  - Reading hand-written text, number plates (convolutional neural networks,)
  - Self-driving cars,
  - Deep-fakes, making faces older or younger in films,
  - Surveillance, monitoring pools for drowing people,
  - Object recognition for automated check out lanes,
  - Increasing resolution of pictures and denoising (auto-encoders,)
  - Reconstruction of 3D objects from images.

• Mathematics: The mathematical models and theory. Description and classification of problems. Statistics: Estimations of accuracy. Engineering: Techniques and algorithms.

| Introduction | Ι | Part 1 – Computer Vision | II | Part 2 – Algebraic Geometry | III | Part 3 – Algebraic Vision | Outro |
|--------------|---|--------------------------|----|-----------------------------|-----|---------------------------|-------|
| 0            | 0 | 0000000                  | 0  | 0000                        | 0   | 000                       | 0     |

• *Computer vision* is an umbrella term. It is essentially the study of how computers can learn information from images (and videos.) This is the *perceptual* component of intelligence. It seeks to understand and automate tasks that the human visual system can do.

- Examples of tasks in computer vision:
  - Reading hand-written text, number plates (convolutional neural networks,)
  - Self-driving cars,
  - Deep-fakes, making faces older or younger in films,
  - Surveillance, monitoring pools for drowing people,
  - Object recognition for automated check out lanes,
  - Increasing resolution of pictures and denoising (auto-encoders,)
  - Reconstruction of 3D objects from images.

• Mathematics: The mathematical models and theory. Description and classification of problems. Statistics: Estimations of accuracy. Engineering: Techniques and algorithms.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

| Introduction | Ι | Part 1 – Computer Vision | II | Part 2 – Algebraic Geometry | III | Part 3 – Algebraic Vision | Outro |
|--------------|---|--------------------------|----|-----------------------------|-----|---------------------------|-------|
| 0            | 0 | 0000000                  | 0  | 0000                        | 0   | 000                       | 0     |

• *Computer vision* is an umbrella term. It is essentially the study of how computers can learn information from images (and videos.) This is the *perceptual* component of intelligence. It seeks to understand and automate tasks that the human visual system can do.

- Examples of tasks in computer vision:
  - Reading hand-written text, number plates (convolutional neural networks,)
  - Self-driving cars,
  - Deep-fakes, making faces older or younger in films,
  - Surveillance, monitoring pools for drowing people,
  - Object recognition for automated check out lanes,
  - Increasing resolution of pictures and denoising (auto-encoders,)
  - Reconstruction of 3D objects from images.

• Mathematics: The mathematical models and theory. Description and classification of problems. Statistics: Estimations of accuracy. Engineering: Techniques and algorithms.

◆□▶◆□▶◆□▶◆□▶ □ ● ● ●

| Introduction | Ι | Part 1 – Computer Vision | II | Part 2 – Algebraic Geometry | III | Part 3 – Algebraic Vision | Outro |
|--------------|---|--------------------------|----|-----------------------------|-----|---------------------------|-------|
| 0            | 0 | 0000000                  | 0  | 0000                        | 0   | 000                       | 0     |

• *Computer vision* is an umbrella term. It is essentially the study of how computers can learn information from images (and videos.) This is the *perceptual* component of intelligence. It seeks to understand and automate tasks that the human visual system can do.

- Examples of tasks in computer vision:
  - Reading hand-written text, number plates (convolutional neural networks,)
  - Self-driving cars,
  - Deep-fakes, making faces older or younger in films,
  - Surveillance, monitoring pools for drowing people,
  - Object recognition for automated check out lanes,
  - Increasing resolution of pictures and denoising (auto-encoders,)
  - Reconstruction of 3D objects from images.

• Mathematics: The mathematical models and theory. Description and classification of problems. Statistics: Estimations of accuracy. Engineering: Techniques and algorithms.

◆□▶◆□▶◆□▶◆□▶ □ ● ● ●

| Introduction | I | Part 1 – Computer Vision | II | Part 2 – Algebraic Geometry | III | Part 3 – Algebraic Vision | Outro |
|--------------|---|--------------------------|----|-----------------------------|-----|---------------------------|-------|
| 0            | 0 | 0000000                  | 0  | 0000                        | 0   | 000                       | 0     |

• *Computer vision* is an umbrella term. It is essentially the study of how computers can learn information from images (and videos.) This is the *perceptual* component of intelligence. It seeks to understand and automate tasks that the human visual system can do.

- Examples of tasks in computer vision:
  - Reading hand-written text, number plates (convolutional neural networks,)
  - Self-driving cars,
  - Deep-fakes, making faces older or younger in films,
  - Surveillance, monitoring pools for drowing people,
  - Object recognition for automated check out lanes,
  - Increasing resolution of pictures and denoising (auto-encoders,)
  - Reconstruction of 3D objects from images.

• Mathematics: The mathematical models and theory. Description and classification of problems. Statistics: Estimations of accuracy. Engineering: Techniques and algorithms.

| Introduction | Ι | Part 1 – Computer Vision | II | Part 2 – Algebraic Geometry | III | Part 3 – Algebraic Vision | Outro |
|--------------|---|--------------------------|----|-----------------------------|-----|---------------------------|-------|
| 0            | 0 | 0000000                  | 0  | 0000                        | 0   | 000                       | 0     |

• *Reconstruction of 3D objects from images* is the main focus of this talk and it has several applications:

– Automated construction of 3D models of cities from aerial photograps. This is used by cityplanners and moviemakers,

- Better spacial understanding for self-driving vehicles,
- Modelling humans and objects, used for films and videogames.

#### • The *reconstruction pipeline* works as follows:

- Input a number of images,
- Find points and lines that two cameras have incommon,
- Solve the reconstruction problem with algebra,
- Output a 3D model.

### • Note that there are two flavours of reconstruction problems.

– Either we know the positions of the cameras and their orientation (self-driving vehicles,)

– Or we don't have any information about the cameras (pictures from the internet.)

| Introduction | Ι | Part 1 – Computer Vision | II | Part 2 – Algebraic Geometry | III | Part 3 – Algebraic Vision | Outro |
|--------------|---|--------------------------|----|-----------------------------|-----|---------------------------|-------|
| 0            | 0 | 0000000                  | 0  | 0000                        | 0   | 000                       | 0     |

• *Reconstruction of 3D objects from images* is the main focus of this talk and it has several applications:

# – Automated construction of 3D models of cities from aerial photograps. This is used by cityplanners and moviemakers,

Better spacial understanding for self-driving vehicles,

– Modelling humans and objects, used for films and videogames.

#### • The *reconstruction pipeline* works as follows:

- Input a number of images,
- Find points and lines that two cameras have incommon,
- Solve the reconstruction problem with algebra,
- Output a 3D model.

### • Note that there are two flavours of reconstruction problems.

– Either we know the positions of the cameras and their orientation (self-driving vehicles,)

– Or we don't have any information about the cameras (pictures from the internet.)

| Introduction | Ι | Part 1 – Computer Vision | II | Part 2 – Algebraic Geometry | III | Part 3 – Algebraic Vision | Outro |
|--------------|---|--------------------------|----|-----------------------------|-----|---------------------------|-------|
| 0            | 0 | 0000000                  | 0  | 0000                        | 0   | 000                       | 0     |

• *Reconstruction of 3D objects from images* is the main focus of this talk and it has several applications:

– Automated construction of 3D models of cities from aerial photograps. This is used by cityplanners and moviemakers,

- Better spacial understanding for self-driving vehicles,

– Modelling humans and objects, used for films and videogames.

#### • The reconstruction pipeline works as follows:

- Input a number of images,
- Find points and lines that two cameras have incommon,
- Solve the reconstruction problem with algebra,
- Output a 3D model.

### • Note that there are two flavours of reconstruction problems.

– Either we know the positions of the cameras and their orientation (self-driving vehicles,)

– Or we don't have any information about the cameras (pictures from the internet.)

| Introduction | Ι | Part 1 – Computer Vision | II | Part 2 – Algebraic Geometry | III | Part 3 – Algebraic Vision | Outro |
|--------------|---|--------------------------|----|-----------------------------|-----|---------------------------|-------|
| 0            | 0 | 0000000                  | 0  | 0000                        | 0   | 000                       | 0     |

• *Reconstruction of 3D objects from images* is the main focus of this talk and it has several applications:

– Automated construction of 3D models of cities from aerial photograps. This is used by cityplanners and moviemakers,

- Better spacial understanding for self-driving vehicles,
- Modelling humans and objects, used for films and videogames.

• The *reconstruction pipeline* works as follows:

- Input a number of images,
- Find points and lines that two cameras have incommon,
- Solve the reconstruction problem with algebra,
- Output a 3D model.

#### • Note that there are two flavours of reconstruction problems.

– Either we know the positions of the cameras and their orientation (self-driving vehicles,)

– Or we don't have any information about the cameras (pictures from the internet.)

| Introduction | Ι | Part 1 – Computer Vision | II | Part 2 – Algebraic Geometry | III | Part 3 – Algebraic Vision | Outro |
|--------------|---|--------------------------|----|-----------------------------|-----|---------------------------|-------|
| 0            | 0 | 0000000                  | 0  | 0000                        | 0   | 000                       | 0     |

• *Reconstruction of 3D objects from images* is the main focus of this talk and it has several applications:

– Automated construction of 3D models of cities from aerial photograps. This is used by cityplanners and moviemakers,

- Better spacial understanding for self-driving vehicles,
- Modelling humans and objects, used for films and videogames.
- The reconstruction pipeline works as follows:
  - Input a number of images,
  - Find points and lines that two cameras have incommon,
  - Solve the reconstruction problem with algebra,
  - Output a 3D model.

### • Note that there are two flavours of reconstruction problems.

– Either we know the positions of the cameras and their orientation (self-driving vehicles,)

– Or we don't have any information about the cameras (pictures from the internet.)

| Introduction | Ι | Part 1 – Computer Vision | II | Part 2 – Algebraic Geometry | III | Part 3 – Algebraic Vision | Outro |
|--------------|---|--------------------------|----|-----------------------------|-----|---------------------------|-------|
| 0            | 0 | 0000000                  | 0  | 0000                        | 0   | 000                       | 0     |

• *Reconstruction of 3D objects from images* is the main focus of this talk and it has several applications:

– Automated construction of 3D models of cities from aerial photograps. This is used by cityplanners and moviemakers,

- Better spacial understanding for self-driving vehicles,
- Modelling humans and objects, used for films and videogames.
- The *reconstruction pipeline* works as follows:

### – Input a number of images,

- Find points and lines that two cameras have incommon,
- Solve the reconstruction problem with algebra,
- Output a 3D model.

### • Note that there are two flavours of reconstruction problems.

– Either we know the positions of the cameras and their orientation (self-driving vehicles,)

– Or we don't have any information about the cameras (pictures from the internet.)

| Introduction | Ι | Part 1 – Computer Vision | II | Part 2 – Algebraic Geometry | III | Part 3 – Algebraic Vision | Outro |
|--------------|---|--------------------------|----|-----------------------------|-----|---------------------------|-------|
| 0            | 0 | 0000000                  | 0  | 0000                        | 0   | 000                       | 0     |

• *Reconstruction of 3D objects from images* is the main focus of this talk and it has several applications:

– Automated construction of 3D models of cities from aerial photograps. This is used by cityplanners and moviemakers,

- Better spacial understanding for self-driving vehicles,
- Modelling humans and objects, used for films and videogames.
- The reconstruction pipeline works as follows:
  - Input a number of images,
  - Find points and lines that two cameras have incommon,
  - Solve the reconstruction problem with algebra,
  - Output a 3D model.

#### • Note that there are two flavours of reconstruction problems.

– Either we know the positions of the cameras and their orientation (self-driving vehicles,)

– Or we don't have any information about the cameras (pictures from the internet.)

| Introduction | Ι | Part 1 – Computer Vision | II | Part 2 – Algebraic Geometry | III | Part 3 – Algebraic Vision | Outro |
|--------------|---|--------------------------|----|-----------------------------|-----|---------------------------|-------|
| 0            | 0 | 0000000                  | 0  | 0000                        | 0   | 000                       | 0     |

• *Reconstruction of 3D objects from images* is the main focus of this talk and it has several applications:

– Automated construction of 3D models of cities from aerial photograps. This is used by cityplanners and moviemakers,

- Better spacial understanding for self-driving vehicles,
- Modelling humans and objects, used for films and videogames.
- The reconstruction pipeline works as follows:
  - Input a number of images,
  - Find points and lines that two cameras have incommon,
  - Solve the reconstruction problem with algebra,
  - Output a 3D model.
- Note that there are two flavours of reconstruction problems.

– Either we know the positions of the cameras and their orientation (self-driving vehicles,)

– Or we don't have any information about the cameras (pictures from the internet.)

| Introduction | Ι | Part 1 – Computer Vision | II | Part 2 – Algebraic Geometry | III | Part 3 – Algebraic Vision | Outro |
|--------------|---|--------------------------|----|-----------------------------|-----|---------------------------|-------|
| 0            | 0 | 0000000                  | 0  | 0000                        | 0   | 000                       | 0     |

• *Reconstruction of 3D objects from images* is the main focus of this talk and it has several applications:

– Automated construction of 3D models of cities from aerial photograps. This is used by cityplanners and moviemakers,

- Better spacial understanding for self-driving vehicles,
- Modelling humans and objects, used for films and videogames.
- The reconstruction pipeline works as follows:
  - Input a number of images,
  - Find points and lines that two cameras have incommon,
  - Solve the reconstruction problem with algebra,
  - Output a 3D model.
- Note that there are two flavours of reconstruction problems.

– Either we know the positions of the cameras and their orientation (self-driving vehicles,)

– Or we don't have any information about the cameras (pictures from the internet.)

| Introduction | Ι | Part 1 – Computer Vision | II | Part 2 – Algebraic Geometry | III | Part 3 – Algebraic Vision | Outro |
|--------------|---|--------------------------|----|-----------------------------|-----|---------------------------|-------|
| 0            | 0 | 0000000                  | 0  | 0000                        | 0   | 000                       | 0     |

• *Reconstruction of 3D objects from images* is the main focus of this talk and it has several applications:

– Automated construction of 3D models of cities from aerial photograps. This is used by cityplanners and moviemakers,

- Better spacial understanding for self-driving vehicles,
- Modelling humans and objects, used for films and videogames.
- The reconstruction pipeline works as follows:
  - Input a number of images,
  - Find points and lines that two cameras have incommon,
  - Solve the reconstruction problem with algebra,
  - Output a 3D model.

### • Note that there are two flavours of reconstruction problems.

– Either we know the positions of the cameras and their orientation (self-driving vehicles,)

– Or we don't have any information about the cameras (pictures from the internet.)

| Introduction | Ι | Part 1 – Computer Vision | II | Part 2 – Algebraic Geometry | III | Part 3 – Algebraic Vision | Outro |
|--------------|---|--------------------------|----|-----------------------------|-----|---------------------------|-------|
| 0            | 0 | 0000000                  | 0  | 0000                        | 0   | 000                       | 0     |

• *Reconstruction of 3D objects from images* is the main focus of this talk and it has several applications:

– Automated construction of 3D models of cities from aerial photograps. This is used by cityplanners and moviemakers,

- Better spacial understanding for self-driving vehicles,
- Modelling humans and objects, used for films and videogames.
- The reconstruction pipeline works as follows:
  - Input a number of images,
  - Find points and lines that two cameras have incommon,
  - Solve the reconstruction problem with algebra,
  - Output a 3D model.
- Note that there are two flavours of reconstruction problems.

– Either we know the positions of the cameras and their orientation (self-driving vehicles,)

– Or we don't have any information about the cameras (pictures from the internet.)

| Introduction | Ι | Part 1 – Computer Vision | II | Part 2 – Algebraic Geometry | III | Part 3 – Algebraic Vision | Outro |
|--------------|---|--------------------------|----|-----------------------------|-----|---------------------------|-------|
| 0            | 0 | 0000000                  | 0  | 0000                        | 0   | 000                       | 0     |

• *Reconstruction of 3D objects from images* is the main focus of this talk and it has several applications:

– Automated construction of 3D models of cities from aerial photograps. This is used by cityplanners and moviemakers,

- Better spacial understanding for self-driving vehicles,
- Modelling humans and objects, used for films and videogames.
- The reconstruction pipeline works as follows:
  - Input a number of images,
  - Find points and lines that two cameras have incommon,
  - Solve the reconstruction problem with algebra,
  - Output a 3D model.
- Note that there are two flavours of reconstruction problems.

– Either we know the positions of the cameras and their orientation (self-driving vehicles,)

– Or we don't have any information about the cameras (pictures from the internet.)

| Introduction | Ι | Part 1 – Computer Vision | II | Part 2 – Algebraic Geometry | III | Part 3 – Algebraic Vision | Outro |
|--------------|---|--------------------------|----|-----------------------------|-----|---------------------------|-------|
| 0            | 0 | 0000000                  | 0  | 0000                        | 0   | 000                       | 0     |



Figure: The reconstruction pipeline.

| Introduction | Ι | Part 1 – Computer Vision | II | Part 2 – Algebraic Geometry | III | Part 3 – Algebraic Vision | Outro |
|--------------|---|--------------------------|----|-----------------------------|-----|---------------------------|-------|
| 0            | 0 | 0000000                  | 0  | 0000                        | 0   | 000                       | 0     |



Figure: Different algebraic reconstruction problems. The number of complex solutions are listed for generic positions (up to rotation and translation.)

| Introduction | Ι | Part 1 – Computer Vision | II | Part 2 – Algebraic Geometry | III | Part 3 – Algebraic Vision | Outro |
|--------------|---|--------------------------|----|-----------------------------|-----|---------------------------|-------|
| 0            | 0 | 00000000                 | 0  | 0000                        | 0   | 000                       | 0     |



Figure: Point reconstruction of the colloseum using pictures found on the internet taken by tourists' smartphones. Also the camera position (and their directions) have been recovered. Taken from *Reconstructing Rome*, by Agarwal, Furukawa et. al.

| Introduction | Ι | Part 1 – Computer Vision | II | Part 2 – Algebraic Geometry | III | Part 3 – Algebraic Vision | Outro |
|--------------|---|--------------------------|----|-----------------------------|-----|---------------------------|-------|
| 0            | 0 | 00000000                 | 0  | 0000                        | 0   | 000                       | 0     |



Figure: Finished 3D models. The pictures used were taken by tourists. Taken from *Reconstructing Rome*, by Agarwal, Furukawa et. al.

◆□▶ ◆■▶ ◆目▶ ◆目▶ 目 のへぐ

| Introduction I | Part 1 – Computer Vision | II | Part 2 – Algebraic Geometry | III | Part 3 – Algebraic Vision | Outro |
|----------------|--------------------------|----|-----------------------------|-----|---------------------------|-------|
| 0 0            | 00000000                 | 0  | 0000                        | 0   | 000                       | 0     |

• There are many types of cameras, and in some cases the type really matters in applications:

– *Pinhole camera:* The "easiest" kind, takes the whole picture at once. Well-understood from a mathematical perspective,

– *Rolling shutter camera:* Common in smartphones, scans each line of the image one by one,

*– Pushbroom camera:* Common in satellites, scans a specific line over and over (so that if stands still it scans the same line repeatedly.)

| Introduction | Ι | Part 1 – Computer Vision | II | Part 2 – Algebraic Geometry | III | Part 3 – Algebraic Vision | Outro |
|--------------|---|--------------------------|----|-----------------------------|-----|---------------------------|-------|
| 0            | 0 | 00000000                 | 0  | 0000                        | 0   | 000                       | 0     |
|              |   |                          |    |                             |     |                           |       |

• There are many types of cameras, and in some cases the type really matters in applications:

*– Pinhole camera:* The "easiest" kind, takes the whole picture at once. Well-understood from a mathematical perspective,

– *Rolling shutter camera:* Common in smartphones, scans each line of the image one by one,

*– Pushbroom camera:* Common in satellites, scans a specific line over and over (so that if stands still it scans the same line repeatedly.)

(ロ) (型) (E) (E) (E) (O)(()

| Introduction | Ι | Part 1 – Computer Vision | II | Part 2 – Algebraic Geometry | III | Part 3 – Algebraic Vision | Outro |
|--------------|---|--------------------------|----|-----------------------------|-----|---------------------------|-------|
| 0            | 0 | 00000000                 | 0  | 0000                        | 0   | 000                       | 0     |
|              |   |                          |    |                             |     |                           |       |

• There are many types of cameras, and in some cases the type really matters in applications:

*– Pinhole camera:* The "easiest" kind, takes the whole picture at once. Well-understood from a mathematical perspective, *– Rolling shutter camera:* Common in smartphones, scans each line of the image one by one,

*– Pushbroom camera:* Common in satellites, scans a specific line over and over (so that if stands still it scans the same line repeatedly.)

(ロ) (型) (E) (E) (E) (O)(()

| Introduction | Ι | Part 1 – Computer Vision | II | Part 2 – Algebraic Geometry | III | Part 3 – Algebraic Vision | Outro |
|--------------|---|--------------------------|----|-----------------------------|-----|---------------------------|-------|
| 0            | 0 | 00000000                 | 0  | 0000                        | 0   | 000                       | 0     |
|              |   |                          |    |                             |     |                           |       |

• There are many types of cameras, and in some cases the type really matters in applications:

*– Pinhole camera:* The "easiest" kind, takes the whole picture at once. Well-understood from a mathematical perspective,

*– Rolling shutter camera:* Common in smartphones, scans each line of the image one by one,

– *Pushbroom camera:* Common in satellites, scans a specific line over and over (so that if stands still it scans the same line repeatedly.)

| Introduction | Ι | Part 1 – Computer Vision | II | Part 2 – Algebraic Geometry | III | Part 3 – Algebraic Vision | Outro |
|--------------|---|--------------------------|----|-----------------------------|-----|---------------------------|-------|
| 0            | 0 | 00000000                 | 0  | 0000                        | 0   | 000                       | 0     |
|              |   |                          |    |                             |     |                           |       |

• There are many types of cameras, and in some cases the type really matters in applications:

*– Pinhole camera:* The "easiest" kind, takes the whole picture at once. Well-understood from a mathematical perspective,

*– Rolling shutter camera:* Common in smartphones, scans each line of the image one by one,

*– Pushbroom camera:* Common in satellites, scans a specific line over and over (so that if stands still it scans the same line repeatedly.)

| Introduction | Ι | Part 1 – Computer Vision | II | Part 2 – Algebraic Geometry | III | Part 3 – Algebraic Vision | Outro |
|--------------|---|--------------------------|----|-----------------------------|-----|---------------------------|-------|
| 0            | 0 | 0000000                  | 0  | 0000                        | 0   | 000                       | 0     |
|              |   |                          |    |                             |     |                           |       |



Figure: Picture taken with a rolling shutter camera shows bent rotor blades. In our 3D reconstruction, we want the rotor blades to be straight.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

# Part 2 – Algebraic Geometry



Figure: The family of *rose curves*.

臣

| Introduction<br>O | I<br>O | Part 1 – Computer Vision | II<br>O | Part 2 – Algebraic Geometry<br>●○○○ | III<br>O | Part 3 – Algebraic Vision | Outro<br>O |
|-------------------|--------|--------------------------|---------|-------------------------------------|----------|---------------------------|------------|
|                   |        |                          |         | <b>.</b>                            |          |                           |            |

• *Algebraic geometry* is the study of solutions to polynomial equations. For example,

 $V = \{(x, y) \in K^2 : x^2 + y^2 = 1\},\$ 

where K is a field (usually  $\mathbb{Q},\mathbb{R}$  or  $\mathbb{C}.)$ 

• Observe that  $\mathbb{C}$  is an algebraically closed field (due to the fundamental theorem of algebra,) which means that its geometry is "nice" and "simple." The real numbers  $\mathbb{R}$  model the real world and computers can symbolically work with rational numbers  $\mathbb{Q}$ .

• This field can be thought of as a generalization of linear algebra, which is the study of the solution set of linear equations.

| Introduction<br>O | I<br>O | Part 1 – Computer Vision | II<br>O | Part 2 – Algebraic Geometry<br>●೦೦೦ | III<br>O | Part 3 – Algebraic Vision | Outro<br>O |
|-------------------|--------|--------------------------|---------|-------------------------------------|----------|---------------------------|------------|
|                   |        |                          |         | r                                   |          |                           |            |

• *Algebraic geometry* is the study of solutions to polynomial equations. For example,

$$V = \{ (x, y) \in K^2 : x^2 + y^2 = 1 \},\$$

where *K* is a field (usually  $\mathbb{Q}, \mathbb{R}$  or  $\mathbb{C}$ .)

• Observe that  $\mathbb{C}$  is an algebraically closed field (due to the fundamental theorem of algebra,) which means that its geometry is "nice" and "simple." The real numbers  $\mathbb{R}$  model the real world and computers can symbolically work with rational numbers  $\mathbb{Q}$ .

• This field can be thought of as a generalization of linear algebra, which is the study of the solution set of linear equations.

| Introduction<br>O | I<br>O | Part 1 – Computer Vision | II<br>O | Part 2 – Algebraic Geometry<br>●೦೦೦ | III<br>O | Part 3 – Algebraic Vision | Outro<br>O |
|-------------------|--------|--------------------------|---------|-------------------------------------|----------|---------------------------|------------|
|                   |        |                          |         | r                                   |          |                           |            |

• *Algebraic geometry* is the study of solutions to polynomial equations. For example,

$$V = \{ (x, y) \in K^2 : x^2 + y^2 = 1 \},\$$

where *K* is a field (usually  $\mathbb{Q}, \mathbb{R}$  or  $\mathbb{C}$ .)

• Observe that  $\mathbb{C}$  is an algebraically closed field (due to the fundamental theorem of algebra,) which means that its geometry is "nice" and "simple." The real numbers  $\mathbb{R}$  model the real world and computers can symbolically work with rational numbers  $\mathbb{Q}$ .

• This field can be thought of as a generalization of linear algebra, which is the study of the solution set of linear equations.

| Introduction<br>O | I<br>O | Part 1 – Computer Vision | II<br>O | Part 2 – Algebraic Geometry<br>●೦೦೦ | III<br>O | Part 3 – Algebraic Vision | Outro<br>O |
|-------------------|--------|--------------------------|---------|-------------------------------------|----------|---------------------------|------------|
|                   |        |                          |         | r                                   |          |                           |            |

• *Algebraic geometry* is the study of solutions to polynomial equations. For example,

$$V = \{ (x, y) \in K^2 : x^2 + y^2 = 1 \},\$$

where *K* is a field (usually  $\mathbb{Q}, \mathbb{R}$  or  $\mathbb{C}$ .)

• Observe that  $\mathbb{C}$  is an algebraically closed field (due to the fundamental theorem of algebra,) which means that its geometry is "nice" and "simple." The real numbers  $\mathbb{R}$  model the real world and computers can symbolically work with rational numbers  $\mathbb{Q}$ .

• This field can be thought of as a generalization of linear algebra, which is the study of the solution set of linear equations.

| Introduction | Ι | Part 1 – Computer Vision | II | Part 2 – Algebraic Geometry | III | Part 3 – Algebraic Vision | Outro |
|--------------|---|--------------------------|----|-----------------------------|-----|---------------------------|-------|
| 0            | 0 | 0000000                  | 0  | 0000                        | 0   | 000                       | 0     |

## Geometry vs. Algebra

• Consider the ring of polynomials  $K[x_1, \ldots, x_n]$  ( $K = \mathbb{Q}, \mathbb{R}, \mathbb{C}$ .) An ideal  $\mathcal{I}$  of this ring is a subring such that  $f \cdot \mathcal{I} \subseteq \mathcal{I}$  for any polynomial  $f \in K[x_1, \ldots, x_n]$ . The ideal generated by polynomials  $f_1, \ldots, f_k$  is

$$\langle f_1,\ldots,f_k\rangle := \Big\{\sum_{i=1}^k a_i f_i : a_i \in K[x_1,\ldots,x_n]\Big\}.$$

• An *algebraic set* (variety)  $\mathcal{V}(\mathcal{I})$  is the set of points in  $K^n$  for which all polynomials in  $\mathcal{I}$  vanish. **Key idea:** If  $f_1, \ldots, f_k$  generate  $\mathcal{I}$ , then

$$\mathcal{V}(\mathcal{I}) = \{ x \in K^n : f_1(x) = \dots = f_n(x) = 0 \}.$$

ション ふゆ アメビアメロア ほうろくの

A computer understands algebraic geometry (an ideal) as a set of finitely many generators:

#### Theorem (Hilbert's Basis Theorem)

If  $K = \mathbb{Q}, \mathbb{R}, \mathbb{C}$  then any ideal of  $K[x_1, \ldots, x_n]$  is finitely generatored

| Introduction | Ι | Part 1 – Computer Vision | II | Part 2 – Algebraic Geometry | III | Part 3 – Algebraic Vision | Outro |
|--------------|---|--------------------------|----|-----------------------------|-----|---------------------------|-------|
| 0            | 0 | 0000000                  | 0  | 0000                        | 0   | 000                       | 0     |

## Geometry vs. Algebra

• Consider the ring of polynomials  $K[x_1, \ldots, x_n]$  ( $K = \mathbb{Q}, \mathbb{R}, \mathbb{C}$ .) An ideal  $\mathcal{I}$  of this ring is a subring such that  $f \cdot \mathcal{I} \subseteq \mathcal{I}$  for any polynomial  $f \in K[x_1, \ldots, x_n]$ . The ideal generated by polynomials  $f_1, \ldots, f_k$  is

$$\langle f_1,\ldots,f_k\rangle := \Big\{\sum_{i=1}^k a_i f_i : a_i \in K[x_1,\ldots,x_n]\Big\}.$$

• An *algebraic set* (variety)  $\mathcal{V}(\mathcal{I})$  is the set of points in  $K^n$  for which all polynomials in  $\mathcal{I}$  vanish. **Key idea:** If  $f_1, \ldots, f_k$  generate  $\mathcal{I}$ , then

$$\mathcal{V}(\mathcal{I}) = \{ x \in K^n : f_1(x) = \dots = f_n(x) = 0 \}.$$

A computer understands algebraic geometry (an ideal) as a set of finitely many generators:

#### Theorem (Hilbert's Basis Theorem)

If  $K = \mathbb{Q}, \mathbb{R}, \mathbb{C}$  then any ideal of  $K[x_1, \ldots, x_n]$  is finitely generatored

| Introduction | Ι | Part 1 – Computer Vision | II | Part 2 – Algebraic Geometry | III | Part 3 – Algebraic Vision | Outro |
|--------------|---|--------------------------|----|-----------------------------|-----|---------------------------|-------|
| 0            | 0 | 0000000                  | 0  | 0000                        | 0   | 000                       | 0     |

### Geometry vs. Algebra

• Consider the ring of polynomials  $K[x_1, \ldots, x_n]$  ( $K = \mathbb{Q}, \mathbb{R}, \mathbb{C}$ .) An ideal  $\mathcal{I}$  of this ring is a subring such that  $f \cdot \mathcal{I} \subseteq \mathcal{I}$  for any polynomial  $f \in K[x_1, \ldots, x_n]$ . The ideal generated by polynomials  $f_1, \ldots, f_k$  is

$$\langle f_1,\ldots,f_k\rangle := \Big\{\sum_{i=1}^k a_i f_i : a_i \in K[x_1,\ldots,x_n]\Big\}.$$

• An *algebraic set* (variety)  $\mathcal{V}(\mathcal{I})$  is the set of points in  $K^n$  for which all polynomials in  $\mathcal{I}$  vanish. **Key idea:** If  $f_1, \ldots, f_k$  generate  $\mathcal{I}$ , then

$$\mathcal{V}(\mathcal{I}) = \{ x \in K^n : f_1(x) = \dots = f_n(x) = 0 \}.$$

A computer understands algebraic geometry (an ideal) as a set of finitely many generators:

#### Theorem (Hilbert's Basis Theorem)

If  $K = \mathbb{Q}, \mathbb{R}, \mathbb{C}$  then any ideal of  $K[x_1, \ldots, x_n]$  is finitely generatored.

| Introduction | Ι | Part 1 – Computer Vision | II | Part 2 – Algebraic Geometry | III | Part 3 – Algebraic Vision | Outro |
|--------------|---|--------------------------|----|-----------------------------|-----|---------------------------|-------|
| 0            | 0 | 0000000                  | 0  | 0000                        | 0   | 000                       | 0     |
|              |   |                          |    |                             |     |                           |       |

• Projective geometry was "first studied" by painters long ago who wanted to draw proportions of structures and buildings in a realistic way.

• Key idea: Compact sets have nice properties that are nice to work with. Sets as  $\mathbb{R}^n$  and  $\mathbb{C}^n$  are non-compact, but this can be fixed via *projectivization*.

• For a field *K*, we define the projective space

 $\mathbb{P}_{K}^{n-1} := \{L \subseteq K^{n} : L \text{ is } 1 - \dim \text{ linear subspace}\} = (K^{n} \setminus \{0\}) / \sim,$ 

where  $x, y \in K^n$  are related by  $\sim$  if they differ by a non-zero constant. Its elements are written  $(x_1 : \cdots : x_n)$ , for some  $(x_1, \ldots, x_n) \in K^n$  that spans the line.

• **Key idea:** Just as algebraic geometry becomes easier over  $\mathbb{C}$  instead of  $\mathbb{R}$ , it also becomes easier in projective space compared to the usual *affine space*.

| Introduction | Ι | Part 1 – Computer Vision | II | Part 2 – Algebraic Geometry | III | Part 3 – Algebraic Vision | Outro |
|--------------|---|--------------------------|----|-----------------------------|-----|---------------------------|-------|
| 0            | 0 | 0000000                  | 0  | 0000                        | 0   | 000                       | 0     |
|              |   |                          |    |                             |     |                           |       |

• Projective geometry was "first studied" by painters long ago who wanted to draw proportions of structures and buildings in a realistic way.

• Key idea: Compact sets have nice properties that are nice to work with. Sets as  $\mathbb{R}^n$  and  $\mathbb{C}^n$  are non-compact, but this can be fixed via *projectivization*.

• For a field *K*, we define the projective space

 $\mathbb{P}_{K}^{n-1} := \{L \subseteq K^{n} : L \text{ is } 1 - \dim \text{ linear subspace}\} = (K^{n} \setminus \{0\}) / \sim,$ 

where  $x, y \in K^n$  are related by  $\sim$  if they differ by a non-zero constant. Its elements are written  $(x_1 : \cdots : x_n)$ , for some  $(x_1, \ldots, x_n) \in K^n$  that spans the line.

• **Key idea:** Just as algebraic geometry becomes easier over  $\mathbb{C}$  instead of  $\mathbb{R}$ , it also becomes easier in projective space compared to the usual *affine space*.

| Introduction | Ι | Part 1 – Computer Vision | II | Part 2 – Algebraic Geometry | III | Part 3 – Algebraic Vision | Outro |
|--------------|---|--------------------------|----|-----------------------------|-----|---------------------------|-------|
| 0            | 0 | 0000000                  | 0  | 0000                        | 0   | 000                       | 0     |
|              |   |                          |    |                             |     |                           |       |

• Projective geometry was "first studied" by painters long ago who wanted to draw proportions of structures and buildings in a realistic way.

• Key idea: Compact sets have nice properties that are nice to work with. Sets as  $\mathbb{R}^n$  and  $\mathbb{C}^n$  are non-compact, but this can be fixed via *projectivization*.

• For a field *K*, we define the projective space

 $\mathbb{P}^{n-1}_K := \{L \subseteq K^n : L \text{ is } 1 - \dim \text{ linear subspace}\} = (K^n \setminus \{0\}) / \sim,$ 

where  $x, y \in K^n$  are related by  $\sim$  if they differ by a non-zero constant. Its elements are written  $(x_1 : \cdots : x_n)$ , for some  $(x_1, \ldots, x_n) \in K^n$  that spans the line.

• **Key idea:** Just as algebraic geometry becomes easier over  $\mathbb{C}$  instead of  $\mathbb{R}$ , it also becomes easier in projective space compared to the usual *affine space*.

| Introduction | Ι | Part 1 – Computer Vision | II | Part 2 – Algebraic Geometry | III | Part 3 – Algebraic Vision | Outro |
|--------------|---|--------------------------|----|-----------------------------|-----|---------------------------|-------|
| 0            | 0 | 0000000                  | 0  | 0000                        | 0   | 000                       | 0     |
|              |   |                          |    |                             |     |                           |       |

• Projective geometry was "first studied" by painters long ago who wanted to draw proportions of structures and buildings in a realistic way.

• Key idea: Compact sets have nice properties that are nice to work with. Sets as  $\mathbb{R}^n$  and  $\mathbb{C}^n$  are non-compact, but this can be fixed via *projectivization*.

• For a field *K*, we define the projective space

 $\mathbb{P}^{n-1}_K := \{L \subseteq K^n : L \text{ is } 1 - \dim \text{ linear subspace}\} = (K^n \setminus \{0\}) / \sim,$ 

where  $x, y \in K^n$  are related by  $\sim$  if they differ by a non-zero constant. Its elements are written  $(x_1 : \cdots : x_n)$ , for some  $(x_1, \ldots, x_n) \in K^n$  that spans the line.

• Key idea: Just as algebraic geometry becomes easier over  $\mathbb{C}$  instead of  $\mathbb{R}$ , it also becomes easier in projective space compared to the usual *affine space*.

| Introduction | Ι | Part 1 – Computer Vision | II | Part 2 – Algebraic Geometry | III | Part 3 – Algebraic Vision | Outro |
|--------------|---|--------------------------|----|-----------------------------|-----|---------------------------|-------|
| 0            | 0 | 0000000                  | 0  | 0000                        | 0   | 000                       | 0     |
|              |   |                          |    |                             |     |                           |       |

• Projective geometry was "first studied" by painters long ago who wanted to draw proportions of structures and buildings in a realistic way.

• Key idea: Compact sets have nice properties that are nice to work with. Sets as  $\mathbb{R}^n$  and  $\mathbb{C}^n$  are non-compact, but this can be fixed via *projectivization*.

• For a field *K*, we define the projective space

 $\mathbb{P}^{n-1}_K := \{L \subseteq K^n : L \text{ is } 1 - \dim \text{ linear subspace}\} = (K^n \setminus \{0\}) / \sim,$ 

where  $x, y \in K^n$  are related by  $\sim$  if they differ by a non-zero constant. Its elements are written  $(x_1 : \cdots : x_n)$ , for some  $(x_1, \ldots, x_n) \in K^n$  that spans the line.

• Key idea: Just as algebraic geometry becomes easier over  $\mathbb{C}$  instead of  $\mathbb{R}$ , it also becomes easier in projective space compared to the usual *affine space*.

| Introduction | Ι | Part 1 – Computer Vision | II | Part 2 – Algebraic Geometry | III | Part 3 – Algebraic Vision | Outro |
|--------------|---|--------------------------|----|-----------------------------|-----|---------------------------|-------|
| 0            | 0 | 0000000                  | 0  | 0000                        | 0   | 000                       | 0     |
|              |   |                          |    |                             |     |                           |       |

#### Grassmannians

# • One example of a common algebraic construction is the *Grassmanian*, defined as

 $\operatorname{Gr}(k,\mathbb{R}^n) := \{L \subseteq \mathbb{R}^n : L \text{ linear space of dim } k\}.$ 

In terms of projective space, we have a natural correspondence

$$\operatorname{Gr}(k-1,\mathbb{P}^{n-1}_{\mathbb{R}})\cong \operatorname{Gr}(k,\mathbb{R}^n).$$

• **Key idea:** These can be viewed as algebraic sets. This allows us to work efficiently with linear spaces, viewing them as points.

• For example,  $Gr(1, \mathbb{P}^3) \cong Gr(2, \mathbb{R}^4)$  lie in  $\mathbb{P}^5$  by the following *Plücker* embedding sending the space spanned by a, b, represented as the matrix

to the vector of the six  $2 \times 2$  minors of this matrix in  $\mathbb{P}^5$ . This is a *natural* bijection.

| Introduction | Ι | Part 1 – Computer Vision | II | Part 2 – Algebraic Geometry | III | Part 3 – Algebraic Vision | Outro |
|--------------|---|--------------------------|----|-----------------------------|-----|---------------------------|-------|
| 0            | 0 | 0000000                  | 0  | 0000                        | 0   | 000                       | 0     |
|              |   |                          |    |                             |     |                           |       |

#### Grassmannians

# • One example of a common algebraic construction is the *Grassmanian*, defined as

 $\operatorname{Gr}(k,\mathbb{R}^n) := \{L \subseteq \mathbb{R}^n : L \text{ linear space of dim } k\}.$ 

In terms of projective space, we have a natural correspondence

$$\operatorname{Gr}(k-1,\mathbb{P}^{n-1}_{\mathbb{R}})\cong \operatorname{Gr}(k,\mathbb{R}^n).$$

# • Key idea: These can be viewed as algebraic sets. This allows us to work efficiently with linear spaces, viewing them as points.

• For example,  $Gr(1, \mathbb{P}^3) \cong Gr(2, \mathbb{R}^4)$  lie in  $\mathbb{P}^5$  by the following *Plücker* embedding sending the space spanned by a, b, represented as the matrix

to the vector of the six  $2 \times 2$  minors of this matrix in  $\mathbb{P}^5$ . This is a *natural* bijection.

| Introduction | Ι | Part 1 – Computer Vision | II | Part 2 – Algebraic Geometry | III | Part 3 – Algebraic Vision | Outro |
|--------------|---|--------------------------|----|-----------------------------|-----|---------------------------|-------|
| 0            | 0 | 0000000                  | 0  | 0000                        | 0   | 000                       | 0     |
|              |   |                          |    |                             |     |                           |       |

#### Grassmannians

# • One example of a common algebraic construction is the *Grassmanian*, defined as

 $\operatorname{Gr}(k,\mathbb{R}^n) := \{L \subseteq \mathbb{R}^n : L \text{ linear space of dim } k\}.$ 

In terms of projective space, we have a natural correspondence

$$\operatorname{Gr}(k-1,\mathbb{P}^{n-1}_{\mathbb{R}}) \cong \operatorname{Gr}(k,\mathbb{R}^n).$$

• Key idea: These can be viewed as algebraic sets. This allows us to work efficiently with linear spaces, viewing them as points.

• For example,  $Gr(1, \mathbb{P}^3) \cong Gr(2, \mathbb{R}^4)$  lie in  $\mathbb{P}^5$  by the following *Plücker embedding* sending the space spanned by a, b, represented as the matrix

| $a_1$ | $a_2$ | $a_3$ | $a_4$ |
|-------|-------|-------|-------|
| $b_1$ | $b_2$ | $b_3$ | $b_4$ |

to the vector of the six  $2 \times 2$  minors of this matrix in  $\mathbb{P}^5$ . This is a *natural* bijection.

# Part 3 – Algebraic Vision

| m views                                                             | 6            | 6          | 6                  | 5           | 5          | 5          | 4          | 4            | 4          | 4          | 4          | 4          | 4          |
|---------------------------------------------------------------------|--------------|------------|--------------------|-------------|------------|------------|------------|--------------|------------|------------|------------|------------|------------|
| $p^{\mathrm{f}}p^{\mathrm{d}}l^{\mathrm{f}}l^{\mathrm{a}}_{\alpha}$ | $1021_{1}$   | $1013_{3}$ | $1005_{5}$         | $2011_{1}$  | $2003_{2}$ | $2003_{3}$ | $1030_{0}$ | $1022_{2}$   | $1014_{4}$ | $1006_{6}$ | $3001_{1}$ | $2110_{0}$ | $2102_{1}$ |
| $(p,l,\mathcal{I})$                                                 | $\bullet$    |            | *                  | •/•         | †X         | ×          | •          | XII          | $\times$   | *          | ••         | •••        | •††        |
| Minimal                                                             | Y            |            |                    | Υ           | Υ          | Υ          | Y          | Υ            |            |            | Υ          | Y          | Υ          |
| Degree                                                              | $> 450k^{*}$ |            |                    | $11306^{*}$ | $26240^*$  | $11008^*$  | $3040^*$   | $4524^*$     |            |            | $1728^{*}$ | $32^{*}$   | $544^{*}$  |
| m views                                                             | 4            | 3          | 3                  | 3           | 3          | 3          | 3          | 3            | 3          | 3          | 3          | 3          | 3          |
| $p^{\mathrm{f}}p^{\mathrm{d}}l^{\mathrm{f}}l^{\mathrm{a}}_{\alpha}$ | $2102_{2}$   | $1040_{0}$ | $1032_{2}$         | $1024_{4}$  | $1016_{6}$ | $1008_{8}$ | $2021_1$   | $2013_{2}$   | $2013_{3}$ | $2005_{3}$ | $2005_{4}$ | $2005_{5}$ | $3010_{0}$ |
| $(p,l,\mathcal{I})$                                                 | •×           | •          | $\parallel \times$ | st          |            | *          | •/•        | Ĩ.<br>Ĩ      | •*         | ¥/¥        | × X        | •**        | •••        |
| Minimal                                                             | Y            | Υ          | Y                  | Y           | Ν          | Ν          | Y          | Y            | Y          | Y          | Y          | Y          | Y          |
| Degree                                                              | $544^{*}$    | 360        | 552                | 480         |            |            | 264        | 432          | 328        | 480        | 240        | 64         | 216        |
| m views                                                             | 3            | 3          | 3                  | 3           | 3          | 3          | 3          | 3            | 2          | 2          | 2          | 2          | 2          |
| $p^{\mathrm{f}}p^{\mathrm{d}}l^{\mathrm{f}}l^{\mathrm{a}}_{\alpha}$ | $3002_{1}$   | $3002_{2}$ | $2111_{1}$         | $2103_{1}$  | $2103_{2}$ | $2103_{3}$ | $3100_{0}$ | $2201_{1}$   | $5000_{2}$ | $4100_{3}$ | $3200_{3}$ | $3200_{4}$ | $2300_{5}$ |
| $(p,l,\mathcal{I})$                                                 | <b>†•</b> †  | •/•        | $\mathbf{M}$       | <b>∤∕</b> † | •X•        | *          | •••        | <b>.</b> •\* | •••<br>••  |            | •••        | •••        |            |
| Minimal<br>Degree                                                   | Y<br>312     | Y<br>224   | Y<br>40            | Y<br>144    | Y<br>144   | Y<br>144   | Y<br>64    |              | Y<br>20    | Y<br>16    | Y<br>12    |            |            |

Figure: Different algebraic reconstruction problems with finitely many solutions. Taken from *PLMP - Point-Line Minimal Problems in Complete Multi-View Visibility*, by Kohn et. al.

◆□ → ◆□ → ◆三 → ◆□ → ◆○ ◆

| Introduction | Ι | Part 1 – Computer Vision | II | Part 2 – Algebraic Geometry | III | Part 3 – Algebraic Vision | Outro |
|--------------|---|--------------------------|----|-----------------------------|-----|---------------------------|-------|
| 0            | 0 | 0000000                  | 0  | 0000                        | 0   | •00                       | 0     |

#### Modelling Cameras Mathematically

• A camera is modelled mathematically as a  $3 \times 4$  matrix *C* of rank 3, projecting points (or lines) in  $\mathbb{P}^3$  to the camera image plane  $\mathbb{P}^2$ . The *focus* (center) of the camera is equal to the kernel of *C*.

• Let  $C^{(1)}, \ldots, C^{(m)}$  be *m* camera matrices with different foci. We define the *joint camera map* 

$$\Phi_C: \mathbb{P}^3 \dashrightarrow (\mathbb{P}^2)^m, X \mapsto (C^{(1)}X, \dots, C^{(m)}X),$$

sending a point in 3-space to its point images in the m cameras.

• Similarly, we have the alternative setting

$$\Upsilon_C: \operatorname{Gr}(1,\mathbb{P}^3) \dashrightarrow \operatorname{Gr}(1,\mathbb{P}^2)^m, L \mapsto (C^{(1)}L, \dots, C^{(m)}L),$$

ション ふゆ アメビアメロア ほうろくの

sending a line in 3-space to its line images in the m cameras.

| Introduction | I | Part 1 – Computer Vision | II | Part 2 – Algebraic Geometry | III | Part 3 – Algebraic Vision | Outro |
|--------------|---|--------------------------|----|-----------------------------|-----|---------------------------|-------|
| 0            | 0 | 0000000                  | 0  | 0000                        | 0   | •00                       | 0     |

## Modelling Cameras Mathematically

• A camera is modelled mathematically as a  $3 \times 4$  matrix *C* of rank 3, projecting points (or lines) in  $\mathbb{P}^3$  to the camera image plane  $\mathbb{P}^2$ . The *focus* (center) of the camera is equal to the kernel of *C*.

 $\bullet$  Let  $C^{(1)},\ldots,C^{(m)}$  be m camera matrices with different foci. We define the  $joint\, camera\, map$ 

$$\Phi_C: \mathbb{P}^3 \dashrightarrow (\mathbb{P}^2)^m, X \mapsto (C^{(1)}X, \dots, C^{(m)}X),$$

#### sending a point in 3-space to its point images in the m cameras.

• Similarly, we have the alternative setting

$$\Upsilon_C: \operatorname{Gr}(1,\mathbb{P}^3) \dashrightarrow \operatorname{Gr}(1,\mathbb{P}^2)^m, L \mapsto (C^{(1)}L, \dots, C^{(m)}L),$$

sending a line in 3-space to its line images in the m cameras.

| Introduction | I | Part 1 – Computer Vision | II | Part 2 – Algebraic Geometry | III | Part 3 – Algebraic Vision | Outro |
|--------------|---|--------------------------|----|-----------------------------|-----|---------------------------|-------|
| 0            | 0 | 0000000                  | 0  | 0000                        | 0   | •00                       | 0     |

## Modelling Cameras Mathematically

• A camera is modelled mathematically as a  $3 \times 4$  matrix *C* of rank 3, projecting points (or lines) in  $\mathbb{P}^3$  to the camera image plane  $\mathbb{P}^2$ . The *focus* (center) of the camera is equal to the kernel of *C*.

 $\bullet$  Let  $C^{(1)},\ldots,C^{(m)}$  be m camera matrices with different foci. We define the *joint camera map* 

$$\Phi_C: \mathbb{P}^3 \dashrightarrow (\mathbb{P}^2)^m, X \mapsto (C^{(1)}X, \dots, C^{(m)}X),$$

sending a point in 3-space to its point images in the m cameras.

• Similarly, we have the alternative setting

$$\Upsilon_C: \operatorname{Gr}(1, \mathbb{P}^3) \dashrightarrow \operatorname{Gr}(1, \mathbb{P}^2)^m, L \mapsto (C^{(1)}L, \dots, C^{(m)}L),$$

sending a line in 3-space to its line images in the m cameras.

| Introduction | Ι | Part 1 – Computer Vision | II | Part 2 – Algebraic Geometry | III | Part 3 – Algebraic Vision | Outro |
|--------------|---|--------------------------|----|-----------------------------|-----|---------------------------|-------|
| 0            | 0 | 0000000                  | 0  | 0000                        | 0   | 000                       | 0     |
|              |   |                          |    |                             |     |                           |       |

• The reconstruction problem becomes easier when we know the camera specifications, i.e. we know the matrices  $C^{(1)}, \ldots, C^{(m)}$ . Reconstructing in this case becomes an exercise in linear algebra, after the image points (or lines) have been fitted into the multi-view variety.

• Key idea: It's difficult for a computer to work with the *joint images*  $\Phi_C(\mathbb{P}^3)$  and  $\Upsilon_C(\operatorname{Gr}(1,\mathbb{P}^3))$ . Instead, we consider the *Zariski closure* of these images, written  $\mathcal{M}_C$  in the point case and  $\mathcal{L}_C$  in the line case. These are called *multi-view varieties*. The Zariski closure of a set A is the smallest algebraic set containing A.

• Any data comes with noise and we therefore fit them into the multi-view varieties by finding the closest point to it in Euclidean distance.

| Introduction | Ι | Part 1 – Computer Vision | II | Part 2 – Algebraic Geometry | III | Part 3 – Algebraic Vision | Outro |
|--------------|---|--------------------------|----|-----------------------------|-----|---------------------------|-------|
| 0            | 0 | 0000000                  | 0  | 0000                        | 0   | 000                       | 0     |
|              |   |                          |    |                             |     |                           |       |

• The reconstruction problem becomes easier when we know the camera specifications, i.e. we know the matrices  $C^{(1)}, \ldots, C^{(m)}$ . Reconstructing in this case becomes an exercise in linear algebra, after the image points (or lines) have been fitted into the multi-view variety.

• Key idea: It's difficult for a computer to work with the *joint images*  $\Phi_C(\mathbb{P}^3)$  and  $\Upsilon_C(\operatorname{Gr}(1,\mathbb{P}^3))$ . Instead, we consider the *Zariski closure* of these images, written  $\mathcal{M}_C$  in the point case and  $\mathcal{L}_C$  in the line case. These are called *multi-view varieties*. The Zariski closure of a set A is the smallest algebraic set containing A.

• Any data comes with noise and we therefore fit them into the multi-view varieties by finding the closest point to it in Euclidean distance.

| Introduction | Ι | Part 1 – Computer Vision | II | Part 2 – Algebraic Geometry | III | Part 3 – Algebraic Vision | Outro |
|--------------|---|--------------------------|----|-----------------------------|-----|---------------------------|-------|
| 0            | 0 | 0000000                  | 0  | 0000                        | 0   | 000                       | 0     |
|              |   |                          |    |                             |     |                           |       |

• The reconstruction problem becomes easier when we know the camera specifications, i.e. we know the matrices  $C^{(1)}, \ldots, C^{(m)}$ . Reconstructing in this case becomes an exercise in linear algebra, after the image points (or lines) have been fitted into the multi-view variety.

• Key idea: It's difficult for a computer to work with the *joint images*  $\Phi_C(\mathbb{P}^3)$  and  $\Upsilon_C(\operatorname{Gr}(1,\mathbb{P}^3))$ . Instead, we consider the *Zariski closure* of these images, written  $\mathcal{M}_C$  in the point case and  $\mathcal{L}_C$  in the line case. These are called *multi-view varieties*. The Zariski closure of a set A is the smallest algebraic set containing A.

• Any data comes with noise and we therefore fit them into the multi-view varieties by finding the closest point to it in Euclidean distance.

| Introduction | Ι | Part 1 – Computer Vision | II | Part 2 – Algebraic Geometry | III | Part 3 – Algebraic Vision | Outro |
|--------------|---|--------------------------|----|-----------------------------|-----|---------------------------|-------|
| 0            | 0 | 0000000                  | 0  | 0000                        | 0   | 000                       | 0     |
|              |   |                          |    |                             |     |                           |       |

• In the *generic case* (the cameras are chosen randomly for instance,) we can write the ideals defining the multi-view varieties. Geometrically, they are explained as follows:

#### Theorem

In the point case, the variety consists of the image points whose back-projected lines in  $\mathbb{P}^3$  meet in a point. In the line case, the variety conists of the image lines whose back-projected planes in  $\mathbb{P}^3$  meet in a line.

• Practicioners are interested in the robustness of the two approaches. There is numerical evidence that the line approach is more stable. We want algebraic evidence for this.

• In this direction, the *Euclidean distance degree* of a variety  $\mathcal{V} \subseteq \mathbb{R}^n$  is the number of complex critical points of

$$||v-x||_2^2,$$

| Introduction | Ι | Part 1 – Computer Vision | II | Part 2 – Algebraic Geometry | III | Part 3 – Algebraic Vision | Outro |
|--------------|---|--------------------------|----|-----------------------------|-----|---------------------------|-------|
| 0            | 0 | 0000000                  | 0  | 0000                        | 0   | 000                       | 0     |
|              |   |                          |    |                             |     |                           |       |

• In the *generic case* (the cameras are chosen randomly for instance,) we can write the ideals defining the multi-view varieties. Geometrically, they are explained as follows:

#### Theorem

In the point case, the variety consists of the image points whose back-projected lines in  $\mathbb{P}^3$  meet in a point. In the line case, the variety conists of the image lines whose back-projected planes in  $\mathbb{P}^3$  meet in a line.

• Practicioners are interested in the robustness of the two approaches. There is numerical evidence that the line approach is more stable. We want algebraic evidence for this.

• In this direction, the *Euclidean distance degree* of a variety  $\mathcal{V} \subseteq \mathbb{R}^n$  is the number of complex critical points of

$$||v-x||_2^2,$$

| Introduction | Ι | Part 1 – Computer Vision | II | Part 2 – Algebraic Geometry | III | Part 3 – Algebraic Vision | Outro |
|--------------|---|--------------------------|----|-----------------------------|-----|---------------------------|-------|
| 0            | 0 | 0000000                  | 0  | 0000                        | 0   | 000                       | 0     |
|              |   |                          |    |                             |     |                           |       |

• In the *generic case* (the cameras are chosen randomly for instance,) we can write the ideals defining the multi-view varieties. Geometrically, they are explained as follows:

#### Theorem

In the point case, the variety consists of the image points whose back-projected lines in  $\mathbb{P}^3$  meet in a point. In the line case, the variety conists of the image lines whose back-projected planes in  $\mathbb{P}^3$  meet in a line.

• Practicioners are interested in the robustness of the two approaches. There is numerical evidence that the line approach is more stable. We want algebraic evidence for this.

• In this direction, the *Euclidean distance degree* of a variety  $\mathcal{V} \subseteq \mathbb{R}^n$  is the number of complex critical points of

$$||v-x||_2^2,$$

| Introduction | Ι | Part 1 – Computer Vision | II | Part 2 – Algebraic Geometry | III | Part 3 – Algebraic Vision | Outro |
|--------------|---|--------------------------|----|-----------------------------|-----|---------------------------|-------|
| 0            | 0 | 0000000                  | 0  | 0000                        | 0   | 000                       | 0     |
|              |   |                          |    |                             |     |                           |       |

• In the *generic case* (the cameras are chosen randomly for instance,) we can write the ideals defining the multi-view varieties. Geometrically, they are explained as follows:

#### Theorem

In the point case, the variety consists of the image points whose back-projected lines in  $\mathbb{P}^3$  meet in a point. In the line case, the variety conists of the image lines whose back-projected planes in  $\mathbb{P}^3$  meet in a line.

• Practicioners are interested in the robustness of the two approaches. There is numerical evidence that the line approach is more stable. We want algebraic evidence for this.

• In this direction, the *Euclidean distance degree* of a variety  $\mathcal{V} \subseteq \mathbb{R}^n$  is the number of complex critical points of

$$||v - x||_2^2$$
,

| Introduction | Ι | Part 1 – Computer Vision | II | Part 2 – Algebraic Geometry | III | Part 3 – Algebraic Vision | Outro |
|--------------|---|--------------------------|----|-----------------------------|-----|---------------------------|-------|
| 0            | 0 | 0000000                  | 0  | 0000                        | 0   | 000                       | •     |

# Thank you for listening!

- A few relevant sources:
  - S. Agarwal, Y. Furukawa et.al. Reconstructing Rome.
  - R. Szeliski. Computer Vision, Algorithms and Applications.
  - M. Trager, M. Hebert, J. Ponce. The joint image handbook.
  - J. Kileel. Algebraic Geometry for Computer Vision.
  - K. Kohn et. al. *PLMP Point-Line Minimal Problems in Complete Multi-View Visibility.*