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Verification of the properties:

h(X = x) = log, ﬁ = —log, P(X = x)

1. Deterministic outcomes contain no information.

PX=x)=1 = h(X=x)=0
(x=x) = —log(3) = 0
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Verification of the properties:

h(X = x) = log, ﬁ = —log, P(X = X)

2. Information content increases with decreasing probability.
P(X =x) < P(X=xX) = h(X=x) > h(X =x')
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Shannon information content

Verification of the properties:

h(x = x) = log, ﬁ = —log, P(X = x)

3. Information content is additive for independent R.V.s.
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Shannon information content

Verification of the properties:

h(x = x) = log, ﬁ = —log, P(X = x)

3. Information content is additive for independent R.V.s.

PX=xY=y)=PX=x)P(Y=y) = h(X=x,Y=y)=h(X=x)+h(Y=y)

P(Y =y)
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total: 0.2515 bits

We missed. The probability to miss was 21/22. The information we gained is

h(miss w/22) = log,(22/21)
= 0.0671
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total: 0.3219 bits

We missed. The probability to miss was 20/21. The information we gained is

h(miss w/21) = log,(21/20)
= 0.0703
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total: 0.3959 bits

We missed. The probability to miss was 19/20. The information we gained is

h(miss w/20) = log,(20/19)
= 0.0740
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Submarine example

total: 4.6439 bits

We found it! The probability to hit was 1/19. The information we gained is

h(hit w/22) = log,(19/1)
— 4.248
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Another try

total: 4.6439 bits

We found it! The probability to hit was 1/22. The information we gained is

h(hit w/22) = log,(22/1)
= 4.4594




eeeeeeeeee




eeeeeeeeee




One more try

total: 4.6439 bits

We found it! The probability to hit was 1/25. The information we gained is

h(hit w/25) = log,(25/1)
= 4.6439
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Shannon entropy

Example for a weighted coin
Let

X — 1 with probability p
~ o with probability 1 — p

Then

H(X) = —plog(p) — (1 — p) log(1 — p)
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Joint entropy

Multivariate generalization of the Shannon entropy.
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Entropy of the conditional distribution
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Conditional entropy

Entropy of the conditional distribution

XY = 9) = 3 PUX = xlY =) o8 e 5
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Conditional entropy

H(XIY) = P(Y = y)H(X]Y = y)
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Conditional entropy

Entropy of the conditional distribution

HX|Y =y) =) P(X=x|Y =y) |0gz(m)
Conditional entropy
HXIY) = > P(v = y)H(X|Y = y)
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Conditional entropy

Entropy of the conditional distribution
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Conditional entropy

Properties of the conditional entropy:
1. H(X,Y) = H(X]Y) + H(Y)
2. H(XIY)=0 ifXis deterministic knowing Y
3. H(X]Y)=H(X) ifXandY areindependent
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Kullback-Leibler divergence

A useful "measure" of difference between two distributions. Let P and Q be two
distributions,

Du(PllQ) = 3" P(x)log, 20

xeX ( )
Properties of the KL-divergence:
1. D (P||Q) >0
2. D (P]|Q) =0onlyifP=Q
3. It's not a metric: Dy, (P||Q) # D (Q||P) in general




KL-divergence

Illustration

| video




var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton0'){ocgs[i].state=false;}}
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Mutual information

1Y) = D (P(x, y)[|P(x)P(y))
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1Y) = D (P(x, y)[|P(x)P(y))
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Data-processing inequality.




Mutual information

1Y) = D (P(x, y)[|P(x)P(y))

xeX yey
= H(X) — H(X|Y)
= H(Y) — H(Y|X)

= H(X,Y) — H(X]Y) — H(Y|X)
Data-processing inequality. If X — Y — Z forms a Markov chain,

1%, Y) > 1(X; 2)




Application in Machine Learning

The information plane and the information bottleneck. Shwartz-Ziv, Ravid, and
Naftali Tishby. "Opening the black box of deep neural networks via information."
(2017)
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DNN as an encoder-decoder

Encoder Decoder
P(T|X P (Y|T
Tx) o (Y17)

Figure: The DNN layers form a Markov chain of successive internal representations of the
input layer X.




The Information Plane







var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton1'){ocgs[i].state=false;}}






var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton2'){ocgs[i].state=false;}}



The drift and diffusion phases of SGD optimization

10!

3 . | Mean(VW;)|| | STD(YW;)
.

Normalized Mean and STD

1 10 BTV 1000 9000
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The end

Thank you for listening. Any questions?
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