
Introduction to Information Theory and its
applications in Machine Learning

Amaury Gouverneur

WASP - Mathematical Foundations of AI Cluster

September 21, 2021



Outline

Shannon information content

Shannon entropy

KL-divergence

Mutual information

Application in Machine Learning

1



The 1948 paper
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Shannon information content

"Can we define a quantity which will measure, in some sense, how much
information is “produced” by such a process?"

Consider a discrete random variable X.
The Shannon information content for the outcome X = x is defined as:

h(X = x) = log2
1

P(X = x)
= − log2 P(X = x)

Desiderata in measuring information:

1. Deterministic outcomes contain no information

2. Information content increases with decreasing probability

3. Information content is additive for independent R.V.s.
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h(X = x) = log2
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P(X = x)
= − log2 P(X = x)

2. Information content increases with decreasing probability.
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Shannon information content
Verification of the properties:

h(X = x) = log2
1

P(X = x)
= − log2 P(X = x)

2. Information content increases with decreasing probability.

P(X = x) < P(X = x′) =⇒ h(X = x) > h(X = x′)
d

dp
log2

1
p
= − 1

p ln 2
< 0 for p > 0
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Shannon entropy

Average information content:

H(X) =
∑
x∈X

P(X = x)h(x = X)

=
∑
x∈X

P(X = x) log2(
1

P(X = x)
)

= −
∑
x∈X

P(X = x) log2(P(X = x))
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Shannon entropy
Example for a weighted coin
Let

X =

{
1 with probability p
0 with probability 1− p

Then

H(X) = −p log(p)− (1− p) log(1− p)
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Joint entropy

Multivariate generalization of the Shannon entropy.

H(X, Y) =
∑
x∈X

∑
y∈Y

P(X = x, Y = y) log2(
1

P(X = x)P(Y = y)
)
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Conditional entropy

Entropy of the conditional distribution

H(X|Y = y) =
∑
x∈X

P(X = x|Y = y) log2(
1

P(X = x|Y = y)
)

Conditional entropy

H(X|Y) =
∑
y∈Y

P(Y = y)H(X|Y = y)

=
∑
y∈Y

P(Y = y)sumx∈X P(X = x|Y = y) log2(
1

P(X = x|Y = y)
)

=
∑
x∈X

∑
y∈Y

P(X = x, Y = y) log2(
1

P(X = x|Y = y)
)
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Conditional entropy

Properties of the conditional entropy:

1. H(X,Y) = H(X|Y) + H(Y)

2. H(X|Y) = 0 if X is deterministic knowing Y

3. H(X|Y) = H(X) if X and Y are independent

12
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Kullback-Leibler divergence

A useful "measure" of di�erence between two distributions. Let P and Q be two
distributions,

DKL(P||Q) =
∑
x∈X

P(x) log2
P(x)
Q(x)

Properties of the KL-divergence:

1. DKL(P||Q) ≥ 0

2. DKL(P||Q) = 0 only if P = Q

3. It’s not a metric: DKL(P||Q) 6= DKL(Q||P) in general

13
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KL-divergence
Illustration

KL video
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Mutual information

I(X; Y) = DKL(P(x, y)||P(x)P(y))

=
∑
x∈X

∑
y∈Y

P(X = x, Y = y) log2(
P(X = x, Y = y)

P(X = x)P(Y = y)
)

= H(X)− H(X|Y)
= H(Y)− H(Y|X)
= H(X, Y)− H(X|Y)− H(Y|X)

Data-processing inequality. If X → Y → Z forms a Markov chain,

I(X; Y) ≥ I(X; Z)
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Application in Machine Learning

The information plane and the information bottleneck. Shwartz-Ziv, Ravid, and
Naftali Tishby. "Opening the black box of deep neural networks via information."
(2017)
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DNN as an encoder-decoder

Figure: The DNN layers form a Markov chain of successive internal representations of the
input layer X.
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The Information Plane
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First optimization phase

Learning part 1
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Second optimization phase

Learning part 2
20
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The drift and di�usion phases of SGD optimization
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The end

Thank you for listening. Any questions?
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