Introduction to Information Theory and its applications in Machine Learning

Amaury Gouverneur

WASP - Mathematical Foundations of AI Cluster

September 21, 2021

Outline

Shannon information content

Shannon entropy

KL-divergence

Mutual information

Application in Machine Learning

The 1948 paper

The 1948 paper

- A Mathematical Theory of Communication (1948)

The 1948 paper

- A Mathematical Theory of Communication (1948)

Figure: Claude Shannon

Shannon information content

"Can we define a quantity which will measure, in some sense, how much information is "produced" by such a process?"

Shannon information content

"Can we define a quantity which will measure, in some sense, how much information is "produced" by such a process?"

Consider a discrete random variable X.
The Shannon information content for the outcome $X=x$ is defined as:

$$
h(X=x)=\log _{2} \frac{1}{P(X=x)}=-\log _{2} P(X=x)
$$

Shannon information content

"Can we define a quantity which will measure, in some sense, how much information is "produced" by such a process?"

Consider a discrete random variable X.
The Shannon information content for the outcome $X=x$ is defined as:

$$
h(X=x)=\log _{2} \frac{1}{P(X=x)}=-\log _{2} P(X=x)
$$

Desiderata in measuring information:

Shannon information content

"Can we define a quantity which will measure, in some sense, how much information is "produced" by such a process?"

Consider a discrete random variable X.
The Shannon information content for the outcome $X=x$ is defined as:

$$
h(X=x)=\log _{2} \frac{1}{P(X=x)}=-\log _{2} P(X=x)
$$

Desiderata in measuring information:

1. Deterministic outcomes contain no information

Shannon information content

"Can we define a quantity which will measure, in some sense, how much information is "produced" by such a process?"

Consider a discrete random variable X.
The Shannon information content for the outcome $X=x$ is defined as:

$$
h(x=x)=\log _{2} \frac{1}{P(x=x)}=-\log _{2} P(x=x)
$$

Desiderata in measuring information:

1. Deterministic outcomes contain no information
2. Information content increases with decreasing probability

Shannon information content

"Can we define a quantity which will measure, in some sense, how much information is "produced" by such a process?"

Consider a discrete random variable X.
The Shannon information content for the outcome $X=x$ is defined as:

$$
h(x=x)=\log _{2} \frac{1}{P(x=x)}=-\log _{2} P(x=x)
$$

Desiderata in measuring information:

1. Deterministic outcomes contain no information
2. Information content increases with decreasing probability
3. Information content is additive for independent R.V.s.

Shannon information content

Verification of the properties:

$$
h(x=x)=\log _{2} \frac{1}{P(X=x)}=-\log _{2} P(x=x)
$$

Shannon information content

Verification of the properties:

$$
h(X=x)=\log _{2} \frac{1}{P(X=x)}=-\log _{2} P(x=x)
$$

1. Deterministic outcomes contain no information.

Shannon information content

Verification of the properties:

$$
h(X=x)=\log _{2} \frac{1}{P(X=x)}=-\log _{2} P(x=x)
$$

1. Deterministic outcomes contain no information.

$$
P(X=x)=1 \Longrightarrow h(X=x)=0
$$

Shannon information content

Verification of the properties:

$$
h(x=x)=\log _{2} \frac{1}{P(x=x)}=-\log _{2} P(x=x)
$$

1. Deterministic outcomes contain no information.

$$
\begin{aligned}
& P(X=x)=1 \Longrightarrow h(X=x)=0 \\
& h(x=x)=-\log _{2}\left(\frac{1}{1}\right)=0
\end{aligned}
$$

Shannon information content

Verification of the properties:

$$
h(X=x)=\log _{2} \frac{1}{P(X=x)}=-\log _{2} P(x=x)
$$

2. Information content increases with decreasing probability.

Shannon information content

Verification of the properties:

$$
h(X=x)=\log _{2} \frac{1}{P(X=x)}=-\log _{2} P(x=x)
$$

2. Information content increases with decreasing probability.

$$
P(X=x)<P\left(X=x^{\prime}\right) \Longrightarrow h(X=x)>h\left(X=x^{\prime}\right)
$$

Shannon information content

Verification of the properties:

$$
h(x=x)=\log _{2} \frac{1}{P(x=x)}=-\log _{2} P(x=x)
$$

2. Information content increases with decreasing probability.

$$
\begin{aligned}
& P(X=x)<P\left(X=x^{\prime}\right) \Longrightarrow h(x=x)>h\left(X=x^{\prime}\right) \\
& \frac{d}{d p} \log _{2} \frac{1}{p}=-\frac{1}{p \ln 2}<0 \text { for } p>0
\end{aligned}
$$

Shannon information content

Verification of the properties:

$$
h(x=x)=\log _{2} \frac{1}{P(x=x)}=-\log _{2} P(x=x)
$$

3. Information content is additive for independent R.V.s.

Shannon information content

Verification of the properties:

$$
h(x=x)=\log _{2} \frac{1}{P(x=x)}=-\log _{2} P(x=x)
$$

3. Information content is additive for independent R.V.s.

$$
P(X=x, Y=y)=P(X=x) P(Y=y) \Longrightarrow h(X=x, Y=y)=h(X=x)+h(Y=y)
$$

Shannon information content

Verification of the properties:

$$
h(x=x)=\log _{2} \frac{1}{P(x=x)}=-\log _{2} P(x=x)
$$

3. Information content is additive for independent R.V.s.

$$
P(X=x, Y=y)=P(X=x) P(Y=y) \Longrightarrow h(X=x, Y=y)=h(X=x)+h(Y=y)
$$

$$
h(X=x, Y=y)=\log _{2} \frac{1}{P(X=x) P(Y=y)}
$$

Shannon information content

Verification of the properties:

$$
h(X=x)=\log _{2} \frac{1}{P(X=x)}=-\log _{2} P(X=x)
$$

3. Information content is additive for independent R.V.s.

$$
\begin{aligned}
P(X=x, Y=y) & =P(X=x) P(Y=y) \Longrightarrow h(X=x, Y=y)=h(X=x)+h(Y=y) \\
h(X=x, Y=y) & =\log _{2} \frac{1}{P(X=x) P(Y=y)} \\
& =\log _{2} \frac{1}{P(Y=y)}+\log _{2} \frac{1}{P(Y=y)}
\end{aligned}
$$

Shannon information content

Verification of the properties:

$$
h(X=x)=\log _{2} \frac{1}{P(X=x)}=-\log _{2} P(X=x)
$$

3. Information content is additive for independent R.V.s.

$$
\begin{aligned}
P(X=x, Y=y) & =P(X=x) P(Y=y) \Longrightarrow h(X=x, Y=y)=h(X=x)+h(Y=y) \\
h(X=x, Y=y) & =\log _{2} \frac{1}{P(X=x) P(Y=y)} \\
& =\log _{2} \frac{1}{P(Y=y)}+\log _{2} \frac{1}{P(Y=y)} \\
& =h(X=x)+h(Y=y)
\end{aligned}
$$

Submarine example

total: 0 bits

The goal is to find the submarine

Submarine example

total: 0 bits

Let's chose to uncover the red "?"

Submarine example

total: 0.0588 bits

We missed. The probability to miss was $24 / 25$. The information we gained is

$$
\begin{aligned}
h(\text { miss } w / 25) & =\log _{2}(25 / 24) \\
& =0.0588
\end{aligned}
$$

Submarine example

total: 0.0588 bits

Let's chose to uncover the red "?"

Submarine example

total: 0.1202 bits

We missed. The probability to miss was $23 / 24$. The information we gained is

$$
\begin{aligned}
h(\text { miss } \quad w / 24) & =\log _{2}(24 / 23) \\
& =0.0614
\end{aligned}
$$

Submarine example

total: 0.1202 bits

Let's chose to uncover the red "?"

Submarine example

total: 0.1844 bits

We missed. The probability to miss was $22 / 23$. The information we gained is

$$
\begin{aligned}
h(\text { miss } \quad w / 23) & =\log _{2}(23 / 22) \\
& =0.0641
\end{aligned}
$$

Submarine example

total: 0.1844 bits

Let's chose to uncover the red "?"

Submarine example

We missed. The probability to miss was $21 / 22$. The information we gained is

$$
\begin{aligned}
h(\text { miss } w / 22) & =\log _{2}(22 / 21) \\
& =0.0671
\end{aligned}
$$

Submarine example

total: 0.2515 bits

Let's chose to uncover the red "?"

Submarine example

total: 0.3219 bits

We missed. The probability to miss was 20/21. The information we gained is

$$
\begin{aligned}
h(\text { miss } w / 21) & =\log _{2}(21 / 20) \\
& =0.0703
\end{aligned}
$$

Submarine example

total: 0.3219 bits

Submarine example

total: 0.3959 bits

We missed. The probability to miss was 19/20. The information we gained is

$$
\begin{aligned}
h(\text { miss } \quad w / 20) & =\log _{2}(20 / 19) \\
& =0.0740
\end{aligned}
$$

Submarine example

total: 0.3959 bits

Let's chose to uncover the red "?"

Submarine example

total: 4.6439 bits

We found it! The probability to hit was $1 / 19$. The information we gained is

$$
\begin{aligned}
h(\text { hit } \quad w / 22) & =\log _{2}(19 / 1) \\
& =4.248
\end{aligned}
$$

Another try

Another try

Let's chose to uncover the red "?"

Another try

We missed. The probability to miss was $24 / 25$. The information we gained is

$$
\begin{aligned}
h(\text { miss } w / 25) & =\log _{2}(25 / 24) \\
& =0.0588
\end{aligned}
$$

Another try

Let's chose to uncover the red "?"

Another try

total: 0.1202 bits

We missed. The probability to miss was $23 / 24$. The information we gained is

$$
\begin{aligned}
h(\text { miss } \quad w / 24) & =\log _{2}(24 / 23) \\
& =0.0614
\end{aligned}
$$

Another try

total: 0.1202 bits

Another try

We missed. The probability to miss was $22 / 23$. The information we gained is

$$
\begin{aligned}
h(\text { miss } \quad w / 23) & =\log _{2}(23 / 22) \\
& =0.0641
\end{aligned}
$$

Another try

Let's chose to uncover the red "?"

Another try

We found it! The probability to hit was $1 / 22$. The information we gained is

$$
\begin{aligned}
h(\text { hit } \quad w / 22) & =\log _{2}(22 / 1) \\
& =4.4594
\end{aligned}
$$

One more try

One more try

Let's chose to uncover the red "?"

One more try

total: 4.6439 bits

We found it! The probability to hit was $1 / 25$. The information we gained is

$$
\begin{aligned}
h(\text { hit } \quad w / 25) & =\log _{2}(25 / 1) \\
& =4.6439
\end{aligned}
$$

Shannon entropy

Average information content:

$$
H(X)=\sum_{x \in \mathcal{X}} P(X=x) h(x=X)
$$

Shannon entropy

Average information content:

$$
\begin{aligned}
H(X) & =\sum_{x \in \mathcal{X}} P(X=x) h(x=x) \\
& =\sum_{x \in \mathcal{X}} P(X=x) \log _{2}\left(\frac{1}{P(X=x)}\right)
\end{aligned}
$$

Shannon entropy

Average information content:

$$
\begin{aligned}
H(X) & =\sum_{x \in \mathcal{X}} P(X=x) h(x=X) \\
& =\sum_{x \in \mathcal{X}} P(X=x) \log _{2}\left(\frac{1}{P(X=x)}\right) \\
& =-\sum_{x \in \mathcal{X}} P(X=x) \log _{2}(P(X=x))
\end{aligned}
$$

Shannon entropy

Example for a weighted coin
Let

$$
x= \begin{cases}1 & \text { with probability } p \\ 0 & \text { with probability } 1-p\end{cases}
$$

Shannon entropy

Example for a weighted coin
Let

$$
X= \begin{cases}1 & \text { with probability } p \\ 0 & \text { with probability } 1-p\end{cases}
$$

Then

$$
H(x)=-p \log (p)-(1-p) \log (1-p)
$$

Shannon entropy

Example for a weighted coin
Let

$$
x= \begin{cases}1 & \text { with probability } p \\ 0 & \text { with probability } 1-p\end{cases}
$$

Then

$$
H(x)=-p \log (p)-(1-p) \log (1-p)
$$

Joint entropy

Multivariate generalization of the Shannon entropy.

$$
H(X, Y)=\sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} P(X=x, Y=y) \log _{2}\left(\frac{1}{P(X=x) P(Y=y)}\right)
$$

Conditional entropy

Entropy of the conditional distribution

$$
H(X \mid Y=y)=\sum_{x \in \mathcal{X}} P(X=x \mid Y=y) \log _{2}\left(\frac{1}{P(X=x \mid Y=y)}\right)
$$

Conditional entropy

Entropy of the conditional distribution

$$
H(X \mid Y=y)=\sum_{x \in \mathcal{X}} P(X=x \mid Y=y) \log _{2}\left(\frac{1}{P(X=x \mid Y=y)}\right)
$$

Conditional entropy

Conditional entropy

Entropy of the conditional distribution

$$
H(X \mid Y=y)=\sum_{x \in \mathcal{X}} P(X=x \mid Y=y) \log _{2}\left(\frac{1}{P(X=x \mid Y=y)}\right)
$$

Conditional entropy

$$
H(X \mid Y)=\sum_{y \in \mathcal{Y}} P(Y=y) H(X \mid Y=y)
$$

Conditional entropy

Entropy of the conditional distribution

$$
H(X \mid Y=y)=\sum_{x \in \mathcal{X}} P(X=x \mid Y=y) \log _{2}\left(\frac{1}{P(X=x \mid Y=y)}\right)
$$

Conditional entropy

$$
\begin{aligned}
H(X \mid Y) & =\sum_{y \in \mathcal{Y}} P(Y=y) H(X \mid Y=y) \\
& =\sum_{y \in \mathcal{Y}} P(Y=y) \operatorname{sum}_{x \in \mathcal{X}} P(X=x \mid Y=y) \log _{2}\left(\frac{1}{P(X=x \mid Y=y)}\right)
\end{aligned}
$$

Conditional entropy

Entropy of the conditional distribution

$$
H(X \mid Y=y)=\sum_{x \in \mathcal{X}} P(X=x \mid Y=y) \log _{2}\left(\frac{1}{P(X=x \mid Y=y)}\right)
$$

Conditional entropy

$$
\begin{aligned}
H(X \mid Y) & =\sum_{y \in \mathcal{Y}} P(Y=y) H(X \mid Y=y) \\
& =\sum_{y \in \mathcal{Y}} P(Y=y) \operatorname{sum}_{x \in \mathcal{X}} P(X=x \mid Y=y) \log _{2}\left(\frac{1}{P(X=x \mid Y=y)}\right) \\
& =\sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} P(X=x, Y=y) \log _{2}\left(\frac{1}{P(X=x \mid Y=y)}\right)
\end{aligned}
$$

Conditional entropy

Properties of the conditional entropy:

Conditional entropy

Properties of the conditional entropy:

1. $H(X, Y)=H(X \mid Y)+H(Y)$

Conditional entropy

Properties of the conditional entropy:

1. $H(X, Y)=H(X \mid Y)+H(Y)$
2. $H(X \mid Y)=0$ if X is deterministic knowing Y

Conditional entropy

Properties of the conditional entropy:

1. $H(X, Y)=H(X \mid Y)+H(Y)$
2. $H(X \mid Y)=0$ if X is deterministic knowing Y
3. $H(X \mid Y)=H(X) \quad$ if X and Y are independent

Kullback-Leibler divergence

A useful "measure" of difference between two distributions. Let P and Q be two distributions,

$$
D_{K L}(P \| Q)=\sum_{x \in \mathcal{X}} P(x) \log _{2} \frac{P(x)}{Q(x)}
$$

Kullback-Leibler divergence

A useful "measure" of difference between two distributions. Let P and Q be two distributions,

$$
D_{K L}(P \| Q)=\sum_{x \in \mathcal{X}} P(x) \log _{2} \frac{P(x)}{Q(x)}
$$

Properties of the KL-divergence:

Kullback-Leibler divergence

A useful "measure" of difference between two distributions. Let P and Q be two distributions,

$$
D_{K L}(P \| Q)=\sum_{x \in \mathcal{X}} P(x) \log _{2} \frac{P(x)}{Q(x)}
$$

Properties of the KL-divergence:

1. $D_{K L}(P \| Q) \geq 0$

Kullback-Leibler divergence

A useful "measure" of difference between two distributions. Let P and Q be two distributions,

$$
D_{K L}(P \| Q)=\sum_{x \in \mathcal{X}} P(x) \log _{2} \frac{P(x)}{Q(x)}
$$

Properties of the KL-divergence:

1. $D_{K L}(P \| Q) \geq 0$
2. $D_{K L}(P \| Q)=0$ only if $P=Q$

Kullback-Leibler divergence

A useful "measure" of difference between two distributions. Let P and Q be two distributions,

$$
D_{K L}(P \| Q)=\sum_{x \in \mathcal{X}} P(x) \log _{2} \frac{P(x)}{Q(x)}
$$

Properties of the KL-divergence:

1. $D_{K L}(P \| Q) \geq 0$
2. $D_{K L}(P \| Q)=0$ only if $P=Q$
3. It's not a metric: $D_{K L}(P \| Q) \neq D_{K L}(Q \| P)$ in general

KL-divergence

Illustration

KL

Mutual information

$$
I(X ; Y)=D_{K L}(P(x, y) \| P(x) P(y))
$$

Mutual information

$$
\begin{aligned}
I(X ; Y) & =D_{K L}(P(x, y) \| P(x) P(y)) \\
& =\sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} P(X=x, Y=y) \log _{2}\left(\frac{P(X=x, Y=y)}{P(X=x) P(Y=y)}\right)
\end{aligned}
$$

Mutual information

$$
\begin{aligned}
I(X ; Y) & =D_{K L}(P(x, y) \| P(x) P(y)) \\
& =\sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} P(X=x, Y=y) \log _{2}\left(\frac{P(X=x, Y=y)}{P(X=x) P(Y=y)}\right) \\
& =H(X)-H(X \mid Y)
\end{aligned}
$$

Mutual information

$$
\begin{aligned}
I(X ; Y) & =D_{K L}(P(x, y) \| P(x) P(y)) \\
& =\sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} P(X=x, Y=y) \log _{2}\left(\frac{P(X=x, Y=y)}{P(X=x) P(Y=y)}\right) \\
& =H(X)-H(X \mid Y) \\
& =H(Y)-H(Y \mid X)
\end{aligned}
$$

Mutual information

$$
\begin{aligned}
I(X ; Y) & =D_{K L}(P(x, y) \| P(x) P(y)) \\
& =\sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} P(X=x, Y=y) \log _{2}\left(\frac{P(X=x, Y=y)}{P(X=x) P(Y=y)}\right) \\
& =H(X)-H(X \mid Y) \\
& =H(Y)-H(Y \mid X) \\
& =H(X, Y)-H(X \mid Y)-H(Y \mid X)
\end{aligned}
$$

Mutual information

$$
\begin{aligned}
I(X ; Y) & =D_{K L}(P(x, y) \| P(x) P(y)) \\
& =\sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} P(X=x, Y=y) \log _{2}\left(\frac{P(X=x, Y=y)}{P(X=x) P(Y=y)}\right) \\
& =H(X)-H(X \mid Y) \\
& =H(Y)-H(Y \mid X) \\
& =H(X, Y)-H(X \mid Y)-H(Y \mid X)
\end{aligned}
$$

Data-processing inequality.

Mutual information

$$
\begin{aligned}
I(X ; Y) & =D_{K L}(P(x, y) \| P(x) P(y)) \\
& =\sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} P(X=x, Y=y) \log _{2}\left(\frac{P(X=x, Y=y)}{P(X=x) P(Y=y)}\right) \\
& =H(X)-H(X \mid Y) \\
& =H(Y)-H(Y \mid X) \\
& =H(X, Y)-H(X \mid Y)-H(Y \mid X)
\end{aligned}
$$

Data-processing inequality. If $X \rightarrow Y \rightarrow Z$ forms a Markov chain,

$$
I(X ; Y) \geq I(X ; Z)
$$

Application in Machine Learning

The information plane and the information bottleneck. Shwartz-Ziv, Ravid, and Naftali Tishby. "Opening the black box of deep neural networks via information." (2017)

DNN as an encoder-decoder

Figure: The DNN layers form a Markov chain of successive internal representations of the input layer X.

The Information Plane

First optimization phase
Leadning nadt1

Second optimization phase
Ladining nart?

The drift and diffusion phases of SGD optimization

The end

Thank you for listening. Any questions?

