Introduction to Information Theory and its applications in Machine Learning

Amaury Gouverneur

WASP - Mathematical Foundations of AI Cluster

September 21, 2021

Outline

Shannon information content

Shannon entropy

KL-divergence

Mutual information

Application in Machine Learning

The 1948 paper

The 1948 paper

A Mathematical Theory of Communication (1948)

The 1948 paper

A Mathematical Theory of Communication (1948)

Figure: Claude Shannon

"Can we define a quantity which will measure, in some sense, how much information is "produced" by such a process?"

"Can we define a quantity which will measure, in some sense, how much information is "produced" by such a process?"

Consider a discrete random variable X.

The Shannon information content for the outcome X = x is defined as:

$$h(X = x) = \log_2 \frac{1}{P(X = x)} = -\log_2 P(X = x)$$

"Can we define a quantity which will measure, in some sense, how much information is "produced" by such a process?"

Consider a discrete random variable *X*. The Shannon information content for the outcome X = x is defined as:

$$h(X = x) = \log_2 \frac{1}{P(X = x)} = -\log_2 P(X = x)$$

Desiderata in measuring information:

"Can we define a quantity which will measure, in some sense, how much information is "produced" by such a process?"

Consider a discrete random variable X.

The Shannon information content for the outcome X = x is defined as:

$$h(X = x) = \log_2 \frac{1}{P(X = x)} = -\log_2 P(X = x)$$

Desiderata in measuring information:

1. Deterministic outcomes contain no information

"Can we define a quantity which will measure, in some sense, how much information is "produced" by such a process?"

Consider a discrete random variable X.

The Shannon information content for the outcome X = x is defined as:

$$h(X = x) = \log_2 \frac{1}{P(X = x)} = -\log_2 P(X = x)$$

Desiderata in measuring information:

- 1. Deterministic outcomes contain no information
- 2. Information content increases with decreasing probability

"Can we define a quantity which will measure, in some sense, how much information is "produced" by such a process?"

Consider a discrete random variable X.

The Shannon information content for the outcome X = x is defined as:

$$h(X = x) = \log_2 \frac{1}{P(X = x)} = -\log_2 P(X = x)$$

Desiderata in measuring information:

- 1. Deterministic outcomes contain no information
- 2. Information content increases with decreasing probability
- 3. Information content is additive for independent R.V.s.

Verification of the properties:

$$h(X = x) = \log_2 \frac{1}{P(X = x)} = -\log_2 P(X = x)$$

Verification of the properties:

$$h(X = x) = \log_2 \frac{1}{P(X = x)} = -\log_2 P(X = x)$$

1. Deterministic outcomes contain no information.

Verification of the properties:

$$h(X = x) = \log_2 \frac{1}{P(X = x)} = -\log_2 P(X = x)$$

1. Deterministic outcomes contain no information.

$$P(X = x) = 1 \implies h(X = x) = 0$$

Verification of the properties:

$$h(X = x) = \log_2 \frac{1}{P(X = x)} = -\log_2 P(X = x)$$

1. Deterministic outcomes contain no information.

$$P(X = x) = 1 \implies h(X = x) = 0$$
$$h(X = x) = -\log_2(\frac{1}{1}) = 0$$

Verification of the properties:

$$h(X = x) = \log_2 \frac{1}{P(X = x)} = -\log_2 P(X = x)$$

2. Information content increases with decreasing probability.

Verification of the properties:

$$h(X = x) = \log_2 \frac{1}{P(X = x)} = -\log_2 P(X = x)$$

2. Information content increases with decreasing probability.

$$P(X = x) < P(X = x') \implies h(X = x) > h(X = x')$$

Verification of the properties:

$$h(X = x) = \log_2 \frac{1}{P(X = x)} = -\log_2 P(X = x)$$

2. Information content increases with decreasing probability.

$$P(X = x) < P(X = x') \implies h(X = x) > h(X = x')$$

$$\frac{d}{dp} \log_2 \frac{1}{p} = -\frac{1}{p \ln 2} < 0 \quad \text{for} \quad p > 0$$

Verification of the properties:

$$h(X = x) = \log_2 \frac{1}{P(X = x)} = -\log_2 P(X = x)$$

Verification of the properties:

$$h(X = x) = \log_2 \frac{1}{P(X = x)} = -\log_2 P(X = x)$$

$$P(X = x, Y = y) = P(X = x)P(Y = y) \implies h(X = x, Y = y) = h(X = x) + h(Y = y)$$

Verification of the properties:

$$h(X = x) = \log_2 \frac{1}{P(X = x)} = -\log_2 P(X = x)$$

$$P(X = x, Y = y) = P(X = x)P(Y = y) \implies h(X = x, Y = y) = h(X = x) + h(Y = y)$$

$$h(X = x, Y = y) = \log_2 \frac{1}{P(X = x)P(Y = y)}$$

Verification of the properties:

$$h(X = x) = \log_2 \frac{1}{P(X = x)} = -\log_2 P(X = x)$$

$$P(X = x, Y = y) = P(X = x)P(Y = y) \implies h(X = x, Y = y) = h(X = x) + h(Y = y)$$
$$h(X = x, Y = y) = \log_2 \frac{1}{P(X = x)P(Y = y)}$$
$$= \log_2 \frac{1}{P(Y = y)} + \log_2 \frac{1}{P(Y = y)}$$

Verification of the properties:

$$h(X = x) = \log_2 \frac{1}{P(X = x)} = -\log_2 P(X = x)$$

$$P(X = x, Y = y) = P(X = x)P(Y = y) \implies h(X = x, Y = y) = h(X = x) + h(Y = y)$$

$$h(X = x, Y = y) = \log_2 \frac{1}{P(X = x)P(Y = y)}$$

$$= \log_2 \frac{1}{P(Y = y)} + \log_2 \frac{1}{P(Y = y)}$$

$$= h(X = x) + h(Y = y)$$

total: 0 bits

The goal is to find the submarine

total: 0 bits

Let's chose to uncover the red "?"

total: 0.0588 bits

We missed. The probability to miss was 24/25. The information we gained is

$$h(miss w/25) = \log_2(25/24)$$

= 0.0588

total: 0.0588 bits

Let's chose to uncover the red "?"

total: 0.1202 bits

We missed. The probability to miss was 23/24. The information we gained is

$$h(\text{miss} w/24) = \log_2(24/23)$$

= 0.0614

total: 0.1202 bits

Let's chose to uncover the red "?"

total: 0.1844 bits

We missed. The probability to miss was 22/23. The information we gained is

$$h(\text{miss} \ w/23) = \log_2(23/22)$$

= 0.0641

total: 0.1844 bits

Let's chose to uncover the red "?"

total: 0.2515 bits ? ? ? х ? ? ? Х ? ? Х ? ? Х ? ? ? ? ? ?

We missed. The probability to miss was 21/22. The information we gained is

$$h(\text{miss} w/22) = \log_2(22/21)$$

= 0.0671

total: 0.2515 bits

Let's chose to uncover the red "?"

We missed. The probability to miss was 20/21. The information we gained is

$$h(\text{miss} \ w/21) = \log_2(21/20)$$

= 0.0703

total: 0.3219 bits

Let's chose to uncover the red "?"

We missed. The probability to miss was 19/20. The information we gained is

$$h(\text{miss} \ w/20) = \log_2(20/19)$$

= 0.0740
Submarine example

? ? ? Х х ? ? ? Х ? Х ? Х ? ? ? Х ? ? ? ? ? ?

total: 0.3959 bits

Let's chose to uncover the red "?"

Submarine example

total: 4.6439 bits

We found it! The probability to hit was 1/19. The information we gained is

$$h(hit w/22) = \log_2(19/1)$$

= 4.248

Let's try again

total: 0 bits ?

Let's chose to uncover the red "?"

We missed. The probability to miss was 24/25. The information we gained is

$$h(miss w/25) = \log_2(25/24)$$

= 0.0588

total: 0.0588 bits

Let's chose to uncover the red "?"

We missed. The probability to miss was 23/24. The information we gained is

$$h(\text{miss} w/24) = \log_2(24/23)$$

= 0.0614

total: 0.1202 bits

Let's chose to uncover the red "?"

We missed. The probability to miss was 22/23. The information we gained is

$$h(\text{miss} \ w/23) = \log_2(23/22)$$

= 0.0641

total: 0.1844 bits ? ? ? ? ? ? ? ? ? Х ? ? ? ? Х ? ? ? Х ? ? ? ? ? ?

Let's chose to uncover the red "?"

We found it! The probability to hit was 1/22. The information we gained is

$$h(hit w/22) = \log_2(22/1)$$

= 4.4594

One more try

total: 0 bits

Let's try again

One more try

total: 0 bits

Let's chose to uncover the red "?"

One more try

total: 4.6439 bits

We found it! The probability to hit was 1/25. The information we gained is

$$h(hit w/25) = \log_2(25/1)$$

= 4.6439

Average information content:

$$H(X) = \sum_{x \in \mathcal{X}} P(X = x)h(x = X)$$

Average information content:

ł

$$H(X) = \sum_{x \in \mathcal{X}} P(X = x)h(x = X)$$
$$= \sum_{x \in \mathcal{X}} P(X = x) \log_2(\frac{1}{P(X = x)})$$

Average information content:

ŀ

$$H(X) = \sum_{x \in \mathcal{X}} P(X = x)h(x = X)$$
$$= \sum_{x \in \mathcal{X}} P(X = x)\log_2(\frac{1}{P(X = x)})$$
$$= -\sum_{x \in \mathcal{X}} P(X = x)\log_2(P(X = x))$$

Example for a weighted coin Let

$$X = \begin{cases} 1 & \text{with probability } p \\ 0 & \text{with probability } 1 - p \end{cases}$$

Example for a weighted coin Let

$$X = \begin{cases} 1 & \text{with probability } p \\ 0 & \text{with probability } 1 - p \end{cases}$$

Then

$$H(X) = -p\log(p) - (1-p)\log(1-p)$$

Example for a weighted coin Let

$$X = \begin{cases} 1 & \text{with probability } p \\ 0 & \text{with probability } 1 - p \end{cases}$$

Then

$$H(X) = -p\log(p) - (1-p)\log(1-p)$$

Joint entropy

Multivariate generalization of the Shannon entropy.

$$H(X,Y) = \sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} P(X = x, Y = y) \log_2\left(\frac{1}{P(X = x)P(Y = y)}\right)$$

Entropy of the conditional distribution

$$H(X|Y=y) = \sum_{x \in \mathcal{X}} P(X=x|Y=y) \log_2(\frac{1}{P(X=x|Y=y)})$$

Entropy of the conditional distribution

$$H(X|Y=y) = \sum_{x \in \mathcal{X}} P(X=x|Y=y) \log_2(\frac{1}{P(X=x|Y=y)})$$

Entropy of the conditional distribution

$$H(X|Y=y) = \sum_{x \in \mathcal{X}} P(X=x|Y=y) \log_2(\frac{1}{P(X=x|Y=y)})$$

$$H(X|Y) = \sum_{y \in \mathcal{Y}} P(Y = y) H(X|Y = y)$$

Entropy of the conditional distribution

$$H(X|Y=y) = \sum_{x \in \mathcal{X}} P(X=x|Y=y) \log_2(\frac{1}{P(X=x|Y=y)})$$

$$H(X|Y) = \sum_{y \in \mathcal{Y}} P(Y = y) H(X|Y = y)$$
$$= \sum_{y \in \mathcal{Y}} P(Y = y) sum_{x \in \mathcal{X}} P(X = x|Y = y) \log_2(\frac{1}{P(X = x|Y = y)})$$

Entropy of the conditional distribution

$$H(X|Y=y) = \sum_{x \in \mathcal{X}} P(X=x|Y=y) \log_2(\frac{1}{P(X=x|Y=y)})$$

$$H(X|Y) = \sum_{y \in \mathcal{Y}} P(Y = y)H(X|Y = y)$$

= $\sum_{y \in \mathcal{Y}} P(Y = y)sum_{x \in \mathcal{X}} P(X = x|Y = y) \log_2(\frac{1}{P(X = x|Y = y)})$
= $\sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} P(X = x, Y = y) \log_2(\frac{1}{P(X = x|Y = y)})$

Properties of the conditional entropy:

Properties of the conditional entropy:

1. H(X,Y) = H(X|Y) + H(Y)

Properties of the conditional entropy:

- 1. H(X,Y) = H(X|Y) + H(Y)
- 2. H(X|Y) = 0 if X is deterministic knowing Y

Properties of the conditional entropy:

- 1. H(X,Y) = H(X|Y) + H(Y)
- 2. H(X|Y) = 0 if X is deterministic knowing Y
- 3. H(X|Y) = H(X) if X and Y are independent

A useful "measure" of difference between two distributions. Let P and Q be two distributions,

$$\mathsf{D}_{\mathsf{KL}}(\mathsf{P}||\mathsf{Q}) = \sum_{\mathsf{x}\in\mathcal{X}} \mathsf{P}(\mathsf{x}) \log_2 rac{\mathsf{P}(\mathsf{x})}{\mathsf{Q}(\mathsf{x})}$$

A useful "measure" of difference between two distributions. Let P and Q be two distributions,

$$D_{KL}(P||Q) = \sum_{x \in \mathcal{X}} P(x) \log_2 \frac{P(x)}{Q(x)}$$

Properties of the KL-divergence:

A useful "measure" of difference between two distributions. Let P and Q be two distributions,

$$D_{KL}(P||Q) = \sum_{x \in \mathcal{X}} P(x) \log_2 \frac{P(x)}{Q(x)}$$

Properties of the KL-divergence:

1.
$$D_{ extsf{KL}}(P||Q) \geq 0$$

A useful "measure" of difference between two distributions. Let P and Q be two distributions,

$$D_{KL}(P||Q) = \sum_{x \in \mathcal{X}} P(x) \log_2 \frac{P(x)}{Q(x)}$$

Properties of the KL-divergence:

1.
$$D_{\mathit{KL}}(P||Q) \geq 0$$

2.
$$D_{KL}(P||Q) = 0$$
 only if $P = Q$

A useful "measure" of difference between two distributions. Let P and Q be two distributions,

$$\mathcal{D}_{\mathsf{KL}}(\mathsf{P}||\mathsf{Q}) = \sum_{x \in \mathcal{X}} \mathsf{P}(x) \log_2 rac{\mathsf{P}(x)}{\mathsf{Q}(x)}$$

Properties of the KL-divergence:

1.
$$D_{KL}(P||Q) \geq 0$$

2.
$$D_{KL}(P||Q) = 0$$
 only if $P = Q$

3. It's not a metric: $D_{KL}(P||Q) \neq D_{KL}(Q||P)$ in general

Illustration

$$I(X;Y) = D_{KL}(P(x,y)||P(x)P(y))$$

$$I(X; Y) = D_{KL}(P(x, y)||P(x)P(y))$$

= $\sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} P(X = x, Y = y) \log_2(\frac{P(X = x, Y = y)}{P(X = x)P(Y = y)})$

$$I(X; Y) = D_{KL}(P(x, y)||P(x)P(y))$$

= $\sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} P(X = x, Y = y) \log_2(\frac{P(X = x, Y = y)}{P(X = x)P(Y = y)})$
= $H(X) - H(X|Y)$

$$I(X; Y) = D_{KL}(P(x, y)||P(x)P(y))$$

= $\sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} P(X = x, Y = y) \log_2(\frac{P(X = x, Y = y)}{P(X = x)P(Y = y)})$
= $H(X) - H(X|Y)$
= $H(Y) - H(Y|X)$

$$I(X; Y) = D_{KL}(P(x, y)||P(x)P(y))$$

= $\sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} P(X = x, Y = y) \log_2(\frac{P(X = x, Y = y)}{P(X = x)P(Y = y)})$
= $H(X) - H(X|Y)$
= $H(Y) - H(Y|X)$
= $H(X, Y) - H(X|Y) - H(Y|X)$

$$I(X; Y) = D_{KL}(P(x, y)||P(x)P(y))$$

= $\sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} P(X = x, Y = y) \log_2(\frac{P(X = x, Y = y)}{P(X = x)P(Y = y)})$
= $H(X) - H(X|Y)$
= $H(Y) - H(Y|X)$
= $H(X, Y) - H(X|Y) - H(Y|X)$

Data-processing inequality.

$$I(X; Y) = D_{KL}(P(x, y)||P(x)P(y))$$

= $\sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} P(X = x, Y = y) \log_2(\frac{P(X = x, Y = y)}{P(X = x)P(Y = y)})$
= $H(X) - H(X|Y)$
= $H(Y) - H(Y|X)$
= $H(X, Y) - H(X|Y) - H(Y|X)$

Data-processing inequality. If $X \rightarrow Y \rightarrow Z$ forms a Markov chain,

$$I(X; Y) \geq I(X; Z)$$

Application in Machine Learning

The information plane and the information bottleneck. *Shwartz-Ziv, Ravid, and Naftali Tishby.* "*Opening the black box of deep neural networks via information.*" (2017)

DNN as an encoder-decoder

Figure: The DNN layers form a Markov chain of successive internal representations of the input layer X.

The Information Plane

First optimization phase

Second optimization phase

The drift and diffusion phases of SGD optimization

The end

Thank you for listening. Any questions?