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Example 1: Linear Equations

Does this system of linear equations modulo 2 have a solution?

x1 + x2 + x5 = 1 mod 2

x1 + x3 + x4 = 1 mod 2

x2 + x3 + x5 = 0 mod 2

x2 + x3 + x4 = 1 mod 2
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Example 2: Coloring

Can we color all states of Australia with red, green, and blue so
that no two neighboring states are assigned the same color?
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Example 3: Sudoku

Can we fill in the blanks with digits 1, 2, . . . , 9 so that no digit
appears twice in any row, column or 3× 3 box?
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Common Framework – CSP

Constraint Satisfaction Problem (CSP)

Instance: (V,D,C), where

V is the set of variables,

D is the set of values,

C is the set of constraints.

Question: Is there an assignment of values to the variables
that satisfies all constraints?
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Example 1: Linear Equations as CSP

Does this system of linear equations modulo 2 have a solution?

x1 + x2 + x5 = 1 mod 2

x1 + x3 + x4 = 1 mod 2

x2 + x3 + x5 = 0 mod 2

x2 + x3 + x4 = 1 mod 2

Variables: {x1, x2, x3, x4, x5}.
Values: {0, 1}.
Constraints are x + y + z = 0mod2, x + y + z = 1mod2.
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Example 2: Coloring as CSP

Can we color all states of Australia with red, green, and blue so
that no two neighboring states are assigned the same color?

Variables: {WA,NT, SA,NSW,V, SA, T}.
Values: {red, green,blue}.
Constraints: WA 6= NT, WA 6= SA, NT 6= SA, . . .
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Example 3: Sudoku as CSP

Can we fill in the blanks with digits 1, 2, . . . , 9 so that no digit
appears twice in any row, column or 3× 3 box?

Variables: A1, A2, . . . , I9 (81 in total).

Values: 1, 2, 3, 4, 5, 6, 7, 8, 9.

Constraints are of two types: (i) B1 = 9, . . . , H9 = 9 and
(ii) AllDiff(A1, . . . , A9), AllDiff(A1, . . . , I1),
AllDiff(A1, . . . , C3), . . .
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How to solve CSPs

Brute force: try all |D||V | assignments (applicable only if
|D| is finite).

Can we do better than that?

Linear equations over F2:

yes! Gaussian elimination.

2-Coloring:

yes! Use constraint propagation (next slide).

3-Coloring:

probably not.

CSP in general:

probably not.

probably stands for “unless P=NP” (more on that later).
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Local Consistency: Example

Solving 2-Coloring with (2, 3)-consistency algorithm.

1. Keep record of values for each pair.
2. Consider all triple of variables.
3. Remove 2-incosistent assignments.

If some record is empty, inconsistency has been detected.

For 2-Coloring, (2, 3)-consistency test is sufficient.

Running time: O(|V |3).
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Local Consistency

Which CSPs are locally consistent?

Restrict the set of values and the set of possible constraints.

CSP({0, 1}; 6=) is (2, 3)-consistent.

CSP({0, 1};x⊕ y ⊕ z = 0, x⊕ y ⊕ z = 1) is not
(`, k)-consistent for any fixed `, k.

Theorem (Feder, Vardi ’98)

CSP is solvable by local consistency if and only if it does not
have the “ability to count”.
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Tractability of CSP

(`, k)-consistent CSPs are solvable in O(|V |k) time.

Gaussian elimination runs in O(|C|3) time.

Which CSPs are solvable in polynomial time?

Don’t know how to answer such questions unconditionally.

Instead, assume P6=NP, and prove NP-completeness.
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Computational Complexity

A computational problem is

in P if finding a solution takes polynomial time.

in NP if verifying a solution takes polynomial time.

Technical (but important) note: in the worst case.

P ⊆ NP. Whether the inclusion is strict is unknown.

NP-complete problems are “the most difficult” in NP.
Solving one in polynomial time means P=NP.

Hence, if P6=NP, then NP-complete problems are not
solvable in polynomial time.
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Tractability of CSP

Which CSPs are solvable in polynomial time?

Don’t know how to answer such questions unconditionally.

Instead, assume P6=NP, and prove NP-completeness.

CSP({0, 1}; 6=) is in P.

CSP({0, 1};x⊕ y ⊕ z = 0, x⊕ y ⊕ z = 1) is in P.

CSP({0, 1};x + y + z = 1) is NP-complete.

CSP({0, 1, 2}; 6=) is NP-complete.

Conjecture (Feder, Vardi ’98)

Any CSP that cannot “simulate” CSP({0, 1};x + y + z = 1) is
solvable in polynomial time.
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Dichotomy Conjecture

Conjecture (Feder, Vardi ’98)

Any CSP with finite domain is either in P or NP-complete.

If P(NP, there are many artificial problems in between.

In this sense, CSP is a natural computational problem.

Proved in 2017 by Bulatov and Zhuk (independently).

Both proofs use universal algebra.

Intuitively, CSP is in P if allowed constraints share
“symmetries”, and NP-complete otherwise.
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Coping with NP-completeness

Many interesting CSPs are NP-complete. What to do?

A problem is in P if we can find an exact solution for
any instance in polynomial time.

We have to give up something

. Look for approximate solutions (MaxCSP).

. Use heuristics (like local consistency)

. Design parameterized algorithms.

. Design moderately super-polynomial algorithms.
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Infinite Domain CSPs

What about CSPs with infinite domains?

Many interesting problems:

. CSP(Q;<) aka Digraph Acyclicity.

. CSP(Q;<,=, >) aka Point Algebra.

. CSP(Q;x− y ≤ a | a ∈ Q) aka Simple Temporal
Problem.

. CSP(Q; linear inequalities).

. CSP(Z; linear inequalities).

There is no dichotomy for infinite-domain CSPs.
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Thank You!
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