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The early days

I AI “started” in 1956

– Dartmouth Conference

I High level reasoning seen as the goal

– Initial success of Logic Theorist
– Focus on symbolic systems

I Lots of sceptics

– “A machine can never do X!”
– Focus on showing that machines can do X
⇒Microworlds/Toy problems

Playing Chess René Mellema
A dive into algorithmic game playing 2



Reasoning as search

I Every problem occurs in

some state space

I There are starting states and

ending states

I States can be moved between

(linked)

I Find a route from current

state to an end state
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Reasoning as search

I General problem solving
approach

– Proofs
– Route planning
– Action selection

I Paths/states can lead to

combinatorial explosion

I Pruning of the search tree

necessary
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Why Chess?

I Long interest in “solving”
chess

– Mechanical Turk (1769)
– El Ajedrecista (1912)
– Interest from many

scholars
• Norbert Wiener
• Claude Shannon
• Alan Turing
• John McCarthy
• …

I Seen as a “cognitive”/hard
game

– Only smart people allowed
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Game Theory

I Mathematical study of interaction among agents

I Agents are independent and self-interested

I Interactions are studied as “games”

– Agents pick actions
– Get pay-off (utility) based on all actions chosen.
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Normal form game

I Games are defined by their pay-off matrices

�8 : Actions for player 8
� = �8 × · · · × �=

D8 : �→ R

I A strategy is an action for a player
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Zero sum games

I Games with one winner and one loser

for all 0 ∈ �1 × �2 : D1(0) = −D2(0)

I Solution concept:

– Pick the action that maximises utility
– Whatever the other agent does!

arg max
08 ∈�8

min
0 9 ∈� 9

D8 (08 , 0 9)

– Called the maxmin value
– Coincides with minmax value

arg min
08 ∈�8
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0 9 ∈� 9

D 9 (08 , 0 9)
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Matching pennies
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Rock, paper, scissors
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Rock, paper, scissors

Rock, paper, scissors, lizard, Spock is also a zero-sum game
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Extended form games

I What if there are more actions?

I Extensive form games

I Strategies give an action for each node

I Each action is called a ply

I Can be translated to normal form games

I For zero sum: can calculate maxmin/minmax values
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What about Chess?

I Chess is zero sum

I Chess is extended form

I Using reasoning as search:

– Build extended form tree
– Calculate minmax strategy
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Minimax algorithm

I Calculates minmax values/strategies

I Works on extended form games

– Tree can be either given or generated

I Basis for all zero-sum game algorithms

– Also has non-deterministic extensions

I General form is called Backward Induction
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Minimax Algorithm

FunctionMinimax-Decision(state)

return arg max
0∈Actions(state)

Min-value(Result(state, a))

FunctionMin-value(state)

if Terminal-test(state) then return Utility(state);

v←∞;
for 0 ∈ Actions(state) do

v← min(v, Max-value(Result(state, a)))
return v

FunctionMax-value(state)

if Terminal-test(state) then return Utility(state);

v← −∞;
for 0 ∈ Actions(state) do

v← max(v, Min-value(Result(state, a)))
return v
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Alpha-Beta pruning

I Minimax is not very efficient

I Can we do better?

I Alpha-beta pruning can cut away half the tree

I Opponent will never go to nodes better for you

I If value opponent can force you to is lower than best value you

can get so far, ignore whole branch

I Order of actions matters

– Can use iterative deeping to order moves1

1Requires a heuristic over how good an action is
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Alpha-Beta pruning

Function Alpha-Beta-Decision(state)

v← Max-value(state, -∞,∞);
return 0 ∈ Actions(state) with value v;

FunctionMax-value(state, U, V)

if Terminal-test(state) then return Utility(state);

v← −∞;
for 0 ∈ Actions(state) do

v← max(v, Min-value(Result(state, a), U, V));
if v ≥ V then return v;

U← max(U, v);
return v
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What if the tree is to deep?

I Evaluating whole tree might not be feasible

I Cut off search at a certain depth

I Instead of utility, use a heuristic

– Heuristic calculates expected pay-off for a state
– Heuristic depends on game

I Do iterative deeping until turn time runs out

I No longer guaranteed to give the right move!

– Horizon effect
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Other improvements

I States can occur multiple times

– Transposition table
– Hash function maps similar states on each other
– Hash map stores E for state, action pairs
– Can again double performance

I What if we don’t need to be correct?

– Prune branches likely not between U and V
– Logistello using ProbCut beats regular 64% of time

I Only look at a clearly better option, the Singular Extension

– When depth limit is reached, try singular extension
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Can we now play chess?
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Chess is hard

I Algorithms are general

I Chess specific alterations are needed

I Chess openings and endgames are well understood

– Simply store the best actions for begin/end game states

I Good evaluation function for states needed

I Deep Blue et al run on specialized hardware
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Deep Blue

I Defeated Garry Kasparov in 1997

I Ran parallel Alpha-Beta Search on:

– 30 IBM RS/6000 processors
– 480 custom VLSI chess processors

I Evaluated 30 billion positions per move

I Regularly reached depth 14

– Could hit 40

I 8000 features in the evaluation heuristic

I “Opening book” with 4000 positions

I End game table for up to 6 pieces
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Take home message

I Reasoning as search is a powerful paradigm

– Works well for “cognitive” problems

I Needs specific alteration tailored to problem domain

I Chess is not yet solved, but hardware can change that
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