
WASP Project Course 2021

Composable Software Tools
for the Working Programmer

Background
Modern software technology gives us tools that can systematically analyse and transform software
and thereby dramatically improve developer productivity. However, typical software tools operate
as parts of idiosyncratic frameworks within IDEs or other specialised tools. In industrial practice,
this makes it hard to integrate software tools with other automated processes, to deploy them
organisation-wide, and to enable non-expert software engineers to prototype and experiment.

Cut

Paste

Rename

Pull Up
Field

Cut

Paste

Rename

Pull Up
Method

Cut

Paste

Rename

Push Down
Field

Cut

Paste

Rename

Push Down
Method

Rename
Rename

Cut

Paste
Delegate

Rename

Move Field

Rename

Detach
Split Temp

Behaviour

Preservation

Checker

Figure 1: Splitting 7 refactorings into 5 reusable
primitives in Program Metamorphosis [14].

In this project, we will explore typical soft-
ware technology problems from the perspective
of the UNIX principle that each tool should do
one thing and do it well.1 To the best of our
knowledge, this principle has never been sys-
tematically applied to software tools.

As participants in this project, you will ex-
plore design options for decomposing software
tools into minimal but re-composable compo-
nents and select and implement a subset of the
proposed tools to prototype and showcase their
design (Figure 1 shows an example decomposi-
tion purely for refactoring). Your goal is to find
a decomposition that is both general and practi-
cal, to give non-experts the ability to analyse and
transform source code on the UNIX command
shell, and to combine your tools with other shell tools.

Constraints: Students should have a background in software technology and/or compiler
construction, or complementary expertise (e.g., user studies / software engineering methodology)
and sufficient technical skill to contribute to all phases of the project.

Participants
Industrial partner: Ericsson

Industrial supervisor: Patrik Åberg (patrik.aberg@ericsson.com)

Academic supervisor: Christoph Reichenbach (christoph.reichenbach@cs.lth.se)

Coordinating WARA representative: Christoph Reichenbach (WARA-SW)

1First formulated by McIlroy as “make each program do one thing well“ [12].



Suggested WASP PhD students: Momina Rizwan, Idriss Riouak

Challenges to investigate
As project participants, youwill explore the literature and existing tools (e.g. Clang [3], SpotBugs [2,
8], Error Prone [1]), previous (dis)integration efforts for IDEs (Monto [18] and LSP [17]) and
refactoring: (JunGL [20], Program Metamorphosis [14], and Schäfer et al.’s work [15]) as well
as program analysis DSLs and frameworks (e.g., Soot [19]/Phasar [16], Doop [4], Klee [6],
PQL [11], Flix [10], MetaDL [7], Infer [5]) and extensible tools aimed at end-users (Spoon [13],
Coccinelle [9]), as well as others that you can find.2 First, you will develop a set of use cases
in collaboration with the industrial supervisor, develop a list of design goals together with both
supervisors, and design a set of tools that satisfies the design requirements listed below to satisfy
the design requirements while optimising for your (possibly conflicting) design goals:

Design requirements

Your toolset design must satisfy all of the following:

• Run in a UNIX shell environment (Linux, OS X).
• Not depend on interactive use or availability of a GUI.
• Not tie communication between tools and developers/other tools to any specific libraries
or framework, beyond what the specification of your target language (plus other applicable
standards) guarantee.

Your prototype implementation may diverge from these requirements, within reason, e.g. by
offering extensions that are specific to some given compiler framework.

Design goals

Your design goals should aim to maximise utility for the intended end users, i.e., software engineers
who are familiar with your target language but not with compiler technology or complex program
analyses.

Implementation

You will demonstrate your design with the implementation of a set of prototype tools for either C
(which is likely to simplify the evaluation) or Java (which is likely to simplify the implementation).
Your implementation may be incomplete, as long as it allows you to answer relevant research
questions.

2Two examples of other related tools that attempt to follow the UNIX design principle to some degree are
DMCE (https://github.com/PatrikAAberg/dmce) and clang-rename (https://releases.llvm.org/3.
9.0/tools/clang/tools/extra/docs/clang-rename.html)

https://github.com/PatrikAAberg/dmce
https://releases.llvm.org/3.9.0/tools/clang/tools/extra/docs/clang-rename.html
https://releases.llvm.org/3.9.0/tools/clang/tools/extra/docs/clang-rename.html


Research Questions

Below is a list of possible research questions, but you are free to propose others:

• How effective is your design at helping non-expert software engineers accomplish the tasks
that you have gathered in your set of use cases?

• What effective criteria are there for comparing UNIX-style toolset designs, given the moti-
vation in the Background section?

• What effective strategies are there for interfacing with tools that need “project-wide” infor-
mation (e.g., finding all call sites)?

• What effective strategies are there for experimenting with program transformation (i.e., to
observe the result of a transformation without committing to it)?

• What are the strengths and limitations of streaming UNIX pipelines, the communication
primitive that allows us to connect different tools, in this context?

• What effective strategies are there for reducing or eliminating the need to re-analyse input
programs when processing the same input program more than once, e.g. in a loop or a
pipeline?

Resources
• Tools: You may use and adapt any Open Source systems / libraries for this project, including
your own research tools, as long as they will be Open Source at the end of the project.

• Evaluation: Developers from Ericsson will help evaluate the students’ design for industrial
fit and explore options for continuing this work within the WARA-SW beyond this course.

• Storage: You can use any public git repository or private git resources e.g. at LTH.
• CI: You can use WARA-Common resources for Continuous Integration.
• Web and wiki: You can use WARA-SW resources for private wikis or a web presence, as
needed.

Deliverables
The industrial and academic supervisors for this project ask for the following deliverables:

• A project report in SIGPLAN conference format that collects your design and insights. Aim
for a conference paper.

• A set of Open Source prototype tools that demonstrate your core insights.

The WASP project course manager may add more requirements (e.g., demonstrator videos).



References
[1] Edward Aftandilian, Raluca Sauciuc, Siddharth Priya, and Sundaresan Krishnan. Building

useful program analysis tools using an extensible java compiler. In 2012 IEEE 12th In-
ternational Working Conference on Source Code Analysis and Manipulation, pages 14–23,
2012.

[2] Nathaniel Ayewah,William Pugh, DavidHovemeyer, J. DavidMorgenthaler, and Johan Penix.
Using static analysis to find bugs. IEEE Software, 25(5):22–29, 2008.

[3] Bence Babati, Gábor Horváth, Viktor Májer, and Norbert Pataki. Static analysis toolset
with clang. In Proceedings of the 10th International Conference on Applied Informatics (30
January–1 February, 2017, Eger, Hungary), pages 23–29, 2017.

[4] Martin Bravenboer andYannis Smaragdakis. Strictly declarative specification of sophisticated
points-to analyses. In Proceedings of OOPSLA ’09, pages 243–262, New York, NY, USA,
2009. ACM.

[5] Cristiano Calcagno and Dino Distefano. Infer: An automatic program verifier for memory
safety of c programs. In NASA Formal Methods Symposium, pages 459–465. Springer, 2011.

[6] Ricardo Corin and Felipe Andrés Manzano. Taint analysis of security code in the klee
symbolic execution engine. In International Conference on Information and Communications
Security, pages 264–275. Springer, 2012.

[7] Alexandru Dura, Hampus Balldin, and Christoph Reichenbach. Metadl: Analysing datalog
in datalog. In Proceedings of the 8th ACM SIGPLAN International Workshop on State Of the
Art in Program Analysis, pages 38–43. ACM, 2019.

[8] David Hovemeyer and William Pugh. Finding bugs is easy. Acm sigplan notices, 39(12):92–
106, 2004.

[9] Julia Lawall, Ben Laurie, René Rydhof Hansen, Nicolas Palix, and Gilles Muller. Finding
Error Handling Bugs in OpenSSL Using Coccinelle. In European Dependable Computing
Conference, pages 191–196, Valencia, Spain, April 2010.

[10] Magnus Madsen and Ondřej Lhoták. Fixpoints for the masses: Programming with first-class
datalog constraints. Proc. ACM Program. Lang., 4(OOPSLA), November 2020.

[11] Michael Martin, Benjamin Livshits, and Monica S Lam. Finding application errors and
security flaws using pql: a program query language. Acm Sigplan Notices, 40(10):365–383,
2005.

[12] M. D. McIlroy, E. N. Pinson, and B. A. Tague. Unix time-sharing system: Foreword. Bell
System Technical Journal, 57(6):1899–1904, 1978.

[13] Renaud Pawlak, Martin Monperrus, Nicolas Petitprez, Carlos Noguera, and Lionel Sein-
turier. Spoon: A library for implementing analyses and transformations of java source code.
Software: Practice and Experience, 46(9):1155–1179, 2016.



[14] Christoph Reichenbach, Devin Coughlin, and Amer Diwan. Program Metamorphosis. In
European Conference on Object-Oriented Programming (ECOOP), pages 394–418, Berlin,
Heidelberg, 2009. Springer-Verlag.

[15] Max Schäfer, Mathieu Verbaere, Torbjörn Ekman, and Oege de Moor. Stepping stones over
the refactoring rubicon. In European Conference on Object-Oriented Programming, pages
369–393. Springer, 2009.

[16] Philipp Dominik Schubert, Ben Hermann, and Eric Bodden. Phasar: An inter-procedural
static analysis framework for c/c++. In International Conference on Tools and Algorithms for
the Construction and Analysis of Systems, pages 393–410. Springer, 2019.

[17] Fredrik Siemund and Daniel Tovesson. Language server protocol for extendj. 2018.

[18] Anthony M Sloane, Matthew Roberts, Scott Buckley, and Shaun Muscat. Monto: A dis-
integrated development environment. In International Conference on Software Language
Engineering, pages 211–220. Springer, 2014.

[19] Raja Vallée-Rai, Phong Co, Etienne Gagnon, Laurie Hendren, Patrick Lam, and Vijay Sun-
daresan. Soot: A java bytecode optimization framework. In CASCON First Decade High
Impact Papers, CASCON ’10, pages 214–224, Riverton, NJ, USA, 2010. IBM Corp.

[20] Mathieu Verbaere, Ran Ettinger, and Oege De Moor. Jungl: a scripting language for refac-
toring. In Proceedings of the 28th international conference on Software engineering, pages
172–181, 2006.

Keywords
program analysis, program transformation, command-line interface


	Background
	Participants
	Challenges to investigate
	Design requirements
	Design goals
	Implementation
	Research Questions


	Resources
	Deliverables
	Keywords

