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Short-term Mine Scheduling
using Constraint Programming

Max Åstrand, Mikael Johansson, Alessandro Zanarini
max.astrand@se.abb.com, mikaelj@kth.se, alessandro.zanarini@ch.abb.com

ABSTRACT
Manual short-term scheduling in under-
ground mines is a time-consuming and error-
prone activity. We use Constraint Program-
ming to automate the scheduling process:
deciding what to do where and when.

We extend previous work by account-
ing for fleet travel times, and by introduc-
ing a new model based on solving a related
scheduling problem and transforming its solu-
tion back to the original domain. In addition,
a neighborhood definition is introduced to
optimize using Large Neighborhood Search.

Results show that the proposed method
scales to realistic problem sizes, and that the
solutions obtained are of high-quality.

KEY RESULTS

• The mine scheduling problem resembles a rich variant of a k-stage flow shop,
with a mix of interruptible and uninterruptible jobs, periodically induced machine
unavailabilities, after-lags in some stages, sharing of (certain) machines between
stages, and sequence-dependent setup times due to the travel times of the mobile
machines [1].

• Underground mines can have road networks spanning several hundreds of kilometers.
Therefore, to ensure that schedules are feasible to operationalize, we extend previous
work [2] by including travel times of the mobile machines in the constraint model.

• In addition, we propose a new approach based on first generating solutions to
a modified uninterruptible scheduling problem without blast windows. A post-
processing step inserts blast windows and transforms the solutions to solve the
original problem. To further improve the obtained schedules, Large Neighborhood
Search is used with a domain-specific neighborhood definition based on relaxing all
variables corresponding to jobs scheduled at a random subset of production areas.

• We can find high-quality schedules to realistic instances, generated using data from
an operational mine, including more than 200 jobs. Compared with a common
constructive heuristic [3], solutions are found within minutes exhibiting ∼ 7% lower
objective value. Studying the optimal solution to a relaxed problem, we note that
on a realistic instance we are at most ∼ 12% away from optimality.

REFERENCES:
[1] Åstrand, M., Johansson, M., & Greberg, J. (2018). Underground mine scheduling modelled

as a flow shop: a review of relevant work and future challenges. Journal of the Southern
African Institute of Mining and Metallurgy, 118(12), 1265-1276.

[2] Åstrand, M., Johansson, M., & Zanarini, A. (2018, June). Fleet Scheduling in Underground
Mines Using Constraint Programming. In International Conference on the Integration of
Constraint Programming, Artificial Intelligence, and Operations Research (pp. 605-613).
Springer, Cham.

[3] Pinedo, M. (2012). Scheduling (Vol. 29). New York: Springer.





Semi-supervised multitask learning
Miquel Martí 1,2 Alessandro Pieropan2 Hossein Azizpour1 Atsuto Maki1

1KTH Royal Institute of Technology, Stockholm, Sweden 2Univrses AB, Stockholm, Sweden

Motivation

Multitask learning offers efficient deployment of models for complex scene
understanding but introduces new practical issues, which are key to enable
its use in the industry.

Multitask learning modes:
� (a) - Single set of inputs with different, overlapping sets of labels
� (b) - Multiple sets of inputs with different sets of labels, non-overlapping
� (c) - Same as (a) with labels for one task covering whole input set, for

another only partially. Occurs naturally due to different labelling costs
for different tasks.

(a) (b) (c)
Figure: Different multitask cases for datasets (area within circles) and label sets (shaded
discs).

Approach

Multitask models with shared encoder. We want to leverage unlabeled data
for partially labeled task too. Use both distant supervision from multi-task
learning and consistency regularization semi-supervised learning methods
such as Virtual Adversarial Training [1] on such partially labeled samples for
the task with missing label.

Figure: Batch of two images passed to the multi-task model with two tasks. For the outputs
without corresponding labels the VAT loss is used.

Related work

Some works have addressed the problem of unbalanced label sets in
multi-task learning before with a Pseudo-Labels [2] in Natural Language
Processing [3] and in computer vision in [4], pseudo-labeling one new sample
at each epoch and adding it to the training set, and in [5], using a
knowledge distillation loss with previous snapshots of the model.

Figure: Samples from MultiMNIST dataset.

Experiments

We compare models on MultiMNIST[6,7], which consists of two
classification tasks of digits partially overlaid on top of each other – L
top-left digit, R bottom-right. We simulate the partial labelling for one task
by keeping only a percentage of the labels for this task. For the sample and
task label pairs where the label is missing we simply have zero loss. We
consider three cases: fully labeled, 50% of labels and 10% of labels.

We use Virtual Adversarial Training[1] on the partially-labeled task only
when there is no label for a given sample. We compare uniform task weights
to searching over static weights. We report mean accuracy and standard
deviation over 9 runs on the test set with the hyper-parameter configuration
giving the best validation accuracy.

Figure: Mean average accuracy of both L and R tasks on 9 runs ± standard deviation for
different ratios of labels for both L (left) and R (right) tasks for uniform multitask loss,
weighted loss and both with VAT loss on unlabeled samples.

Conclusions and future work

� Differences between methods indicate that combining VAT and
multi-task might lead to small improvements in most cases. However,
results are within standard deviation over different seeds and increase
the variance of the experimental results.

� Larger improvements happen in the experiments with tasks with fewer
labels, suggesting that the method might be more effective in the less
supervised regimes.

� More experiments with different datasets are needed in order to validate
this preliminary results. Also, experiments for cases with even less labels
for one of the labels should be carried out.

References

1. T. Miyato, S. Maeda, M. Koyama, and S. Ishii. Virtual adversarial
training: a regularization method for supervised and semi-supervised
learning. In ICLR 2016.

2. Dong-Hyun Lee. Pseudo-Label : The Simple and Efficient
Semi-Supervised LearningMethod for Deep Neural Networks. In ICML
2013 Workshop.

3. Marek Rei. Semi-supervised Multitask Learning for Sequence Labeling.
In ACL 2017.

4. N. Khosravan and U. Bagci. Semi-supervised multi-task learning for
lung cancer diagnosis. In EMBC 2018.

5. D. Kim et al. Disjoint Multi-task Learning between Heterogeneous
Human-centric Tasks. In WACV 2018.

6. Sabour, N. Frosst, and G. E. Hinton. Dynamic routing between
capsules. In NIPS 2017.

7. O. Sener and V. Koltun. Multi-task learning as multi-objective
optimization. In NeurIPS 2018.

This work was partially supported by the Wallenberg AI, Autonomous Systems and Software Program (WASP).
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Summary of contributions (see [2]):
Learn fast deep neural network approximations for problems with 
safety constraints 
Demonstrated by embedding neural network for collision avoidance 
scenario on-board nano-quadcopter microcontroller

In a WASP collaboration we also considered 
lattice approximations to motion planning in 
such complex dynamic environments.

Learning Safe Decision-Making for Autonomous Robots
Olov Andersson, Linköping University
Artificial Intelligence and Integrated Computer Systems

Main advisor: Patrick Doherty

Robots are increasingly expected to go beyond controlled environments in laboratories and factories, to enter real-world public spaces 
and homes. However, robot behavior is still usually engineered for narrowly defined scenarios. To manually encode robot behavior that 
works within complex real world environments, such as busy streets or work places, can be a daunting task. The aim of this research is 
to examine efficient methods for automatically learning robot behavior under uncertainty, lowering the costs of deploying robots to 
the real world. A key focus is satisfying the safety requirements and the resource constraints imposed by autonomous robots.

Selected Results

Methods

References

Collision avoidance in mixed human-robot environments is one 
example of a behavior that is difficult to manually engineer

There is considerable uncertainty due to inexact models, sensors, 
and especially difficult-to-predict human motion
Need to consider dynamics constraints
to find safe trajectories through busy 

workplaces or streets

1. Andersson, O., Wzorek, M., Rudol, P., & Doherty, P. Model-Predictive Control with 
Stochastic Collision Avoidance using Bayesian Policy Optimization, Int. Conf. on 
Robotics and Automation (ICRA), 2016.

2. Andersson, O., Wzorek, M., & Doherty, P. Deep learning quadcopter control via 
risk-aware active learning. AAAI Conference on Artificial Intelligence (AAAI), 2017.

3. Andersson, O. (2017). Methods for Scalable and Safe Robot Learning, Licentiate 
Thesis, Linköping University.

4. Andersson, O., Ljungqvist, O., Tiger, M., Axehill, D., & Heintz, F. Receding-horizon 
lattice-based motion planning with dynamic obstacle avoidance, CDC, 2018.

5. Andersson, O., Doherty, P. DeepRL for Autonomous Robots Limitations and 
Safety Challenges, .

6. Andersson, O., Sidén, P., Dahlin, J., Doherty, P., & Villani, M. Real-Time Robotic 
Search using Hierarchical Spatial Point Processes. Conference on Uncertainty in 
Artificial Intelligence (UAI), 2019.

Motivation & Research Goals

Formally, we seek general-purpose approximations to planning
and control under uncertainty

computational limitations and safety constraints
of real robot platforms

These are typically intractable. We instead leverage both 
machine learning techniques, and engineering techniques 
from robotics and control, to compute approximations that 
satisfy safety constraints. These have certain robustness 
advantages over deep reinforcement learning approaches [5].

In particular we draw upon:
Bayesian Learning & Bayesian Optimization
Deep Learning & Deep Reinforcement Learning
Trajectory optimization & Model-Predictive Control (MPC) 

7 cm Bitcraze Crazyflie

MPC with safe collision avoidance 
possible in real-time, but still requires 
capable on-board CPU. 

Want to synthesize behavior for 
smaller robots and embedded 
systems.

Example: Warehouse scenario

Humans and UAV in small workspace

UAV wants to pick up green packages

3 non-cooperative moving obstacles given 

destinations randomly

Summary of contributions (see [4]):
Real-time 3D motion-planning in 
time for moving obstacles
Unified optimization-based graph 
planning & control architecture

Another interdisciplinary collaboration 
considered automating aerial drone search for 
victims after disasters (e.g. earthquakes).

Summary of contributions (see [1]):
Novel constrained Bayesian policy optimization to find 
deterministic MPC approximations that satisfy the safety 
constraints under uncertainty
Demonstrated real-time MPC solution to non-cooperative collision 
avoidance under uncertainty and dynamics for flights with a real 
quadcopter

Summary of contributions (see [6]):
Real-time learning and inference in 
structural spatial point process model
Minimized expected victim harm via 
real-time Monte-Carlo tree search



The design of reliable path-following controllers is a key ingredient
for successful deployment of autonomous tractor-trailer vehicles. It
is challenging since the vehicle is unstable in backward motion and
because the tractor has steering limitations. Additionally, optical
sensors with a limited field of view (FOV) has been proposed to solve
the joint-angle estimation problem online, which introduce restric-
tions on which states that can be reliably estimated. Moreover, in re-
cent years there has been an increased interest for long tractor-trailer
combinations to meet efficiency demands related to transportation.
To improve these long vehicles ability to maneuver in confined envi-
ronments, some trailers can be equipped with steerable wheels.

Problem: Given a nominal path (xr(·),ur(·)) for a reversing general
2-trailer (G2T) vehicle, design a path-following controller that mini-
mizes the path-following error x̃(t) = x(t) − xr(s(t)) while satisfying
the vehicle’s sensing (β3, β̃2) ∈ P and input constraints u ∈ U .
Solution: A controller based on model predictive control (MPC) that
uses sensing and jack-knife preventing constraints:

• Stability region for computed using closed-loop simulations

• Based on the vehicle’s parameters and the sensor’s FOV
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Illustration of sensing geometry (left) and modeled joint-angle constraint (right).

The MPC controller is u(t) = ur(t) + ũ0, where ũ0 is computed by
solving the following optimization problem online

minimize
ũ0,...,ũN−1

x̃T
NPNx̃N +

N−1∑
k=0

(
x̃T
kQx̃k + ũ2

k

)

subject to x̃k+1 = Fkx̃k +Gkũk,

(β̃3,k, β̃2,k) ∈ P̃k, ũk ∈ Ũk, k = 0, 1, . . . , N − 1,

x̃0 = x̃(t).

(1)

• Implemented on full-scale test
vehicle together with Scania CV

• Benchmarked and shown to
outperform an LQ controller

Back
ward

s Joint-angle trajectories 
using LQ controller

Joint-angle trajectories 
using MPC controller

Problem: Develop a trajectory planner for multi-steered N-trailer
(MSNT) vehicles, composed of a car-like tractor and N trailers with
fixed or steerable wheels.
The trajectory planning problem is given by

minimize
u(·), tG

J = tG +

∫ tG

0

l(x(t),u(t))dt

subject to ẋ(t) = f (x(t),u(t)),

x(0) = xI, x(tG) = xG,

x(t) ∈ Xfree, u(t) ∈ U .

(2)

Solution: Combine a lattice-based trajectory planner with an opti-
mal control problem (OCP) step:

• Lattice planner solves combinatorial aspects

• OCP step refines the solution to local optimality

• Last trailer is steerable, making
MS3T vehicle (blue paths) more
flexible than single-steered 3-
trailer (SS3T) vehicle (red paths)

• Objective value after OCP step
(J̄H) is reduced (r̄imp) compared
to state-lattice initialization (J̄D)

Table 1: Results from parallel
parking planning scenario.
Vehicle J̄D J̄H r̄imp

SS3T 270.6 122.4 -55%
MS3T 207.9 98.1 -52%

x [m]

y 
[m

]

Problem: Execute a nominal path (xr(·),ur(·)) for an MSNT vehicle
with a small path-following error x̃(t) = x(t) − xr(s(t)) while satisfy-
ing constraints on states x(·) ∈ X and control input u(·) ∈ U .
Solution: An MPC controller similar to (1).

• Last trailer is steerable, benchmarked
with a single-steered 2-trailer vehicle
and with an LQ controller

• MS2T-MPC (blue) has a larger stabil-
ity region compared to SS2T-MPC (red)
and MS2T-LQ (green)

• The trailer steering drastically re-
duces the transient response of all
path-following error states

MS2T-LQ

SS2T-MPC

MS2T-MPC





The Why

Living in a 3D world, 
all we perceive visually 
are its 2D projections

Computer vision is to 
obtain the underlying 
3D representation

Geometric invariance 
injected into networks 
by data-augmentation 
has many limitations

Invariance that cannot 
be expressed in the 
image plane is 
unachievable

Increased amount of 
computations during 
learning without 
adding new real data

The What

We want a model that is 
capable of recovering the 
3D structure of an object 
given its 2D view(s)

Realistic: textured objects
with lighting

Szaboó, Attila & Favaro, Paolo. (2018). Unsupervised 3D Shape Learning from Image Collections in the Wild. 

Gadelha, Matheus & Maji, Subhransu & Wang, Rui. (2016). 3D Shape Induction from 2D Views of Multiple Objects. 

The How

Disentanglement is to be 
carried out in an 
unsupervised mode

By injecting geometric
properties into the model 
construction

Using differentiable 
rendering

Unsupervised Geometric Deep Learning
Pavlo Melnyk1, Michael Felsberg1, Fredrik Kahl2, Mårten Wadenbäck1

1Computer Vision Laboratory, Linköping University, Sweden
2Computer Vision Group, Chalmers University, Sweden
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The problem of tracking a maneuvering target using a mobile radar
with limited beamwidth is considered.
• Dilemma: How to select the tracking range?
– The risk of losing track of the target decreases with tracking range
– The tracking error increases with tracking range

• Contribution: A method to optimize the tracking range Targets that can turn sharply have to be tracked at a large range
to be kept within field of view.

The target state is estimated using an EKF, and an α-β-filter is used
to predict the performance.

• α-β-filtering equations:
x̂k|k−1 = x̂k−1|k−1 + T v̂k−1|k−1

v̂k|k−1 = v̂k−1|k−1

x̂k|k = x̂k|k−1 + α(yk − x̂k|k−1)

v̂k|k = v̂k|k−1 +
β
T (yk − x̂k|k−1)

• Measurement equation:
yk = h(xk, sk) + ek
ek ∼ N (0, σe)

• Performance measure: Maximum mean squared error

MMSE = σ2
e

[
2α2 + β(2 + α)

α(4− 2α− β)
+

1

β2

A2
maxT

4

σ2
e

]

Depends on:

– filter gains α, β
– measurement noise σe

– time between measurements T
– maximum acceleration of the target Amax

Select tracking parameters such that the MMSE is minimized under
the constraint that the probability of losing track of the target is less
than a user-defined value, γ.

Optimization problem:

minimize MMSE

subject to p(lost track) ≤ γ

Optimization variables:
• Tracking range r

• Beamwidth θBW

• Process noise std dev σw
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• Track the target using a mobile radar
– Beamwidth θBW = 5°
– Acceptable track loss proba-

bility γ = 0.3%

• Evaluate pairs of tracking range and process noise standard devia-
tion as indicated in the Parameter selection section.
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RMSE of the one-step predicted position estimates.
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θ̃max = θBW/3

Using the proposed method, it is possible to optimize:
• the tracking range (for a given beamwidth)
• the beamwidth (for a given tracking range)
such that the MMSE is minimized, with an acceptable risk of losing
track of the target.
P. Boström-Rost, W. D. B. Axehill, Daniel, and G. Hendeby. Optimal range and
beamwidth for radar tracking of maneuvering targets using nearly constant veloc-
ity filters. To appear in Proceedings of IEEE Aerospace Conference, Big Sky, MT,
USA, 2020.

This work was partially supported by the Wallenberg AI, Autonomous
Systems and Software Program (WASP) funded by the Knut and Alice
Wallenberg Foundation.

WALLENBERG AI, 
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Automation of efficient, reliable, and elastic
predictive control over the cloud
Per Skarin, Ind. PhD, Ericsson and Lund University

Dept. of Automatic Control, Autonomous Clouds and Networks
Supervisors: Karl-Erik Årzen (LU), Johan Eker (Ericsson) and Maria Kihl (LU)

Motivation & Research Goals

Remote code execution has various uses within control; two of which are offloading heavy computations, andmoving executions close to
the data. Modern systems use efficient, cost effective, and scalable infrastructure clouds and networks which are becoming increasingly
ubiqutous. This project identifies a research gap for critical systems which are to be seamlessly integrated in an era of fog/edge computing.
The project studies automation of time sensitive systems over the cloud. The goals are to quantify the potentials and limitations, and to
propose control and software strategies incorporating resiliency, reliability and resource management.

Methods

Clouds and fog computing are drivers in the current and future growth of
large scale system automation. As industries, transports, and smart cities are
increasing their presence in this domain we seek to investigate how real time
operated cyber-physical-systems canmake use of these ecosystems[1]. We use
feedback control, public and private clouds, next generation wireless technol-
ogy, and available software platforms to provide proof of concept infrastruc-
ture, and application benchmarks[2].

u∗(x) ∶= argmin
N−1
∑
i=0

l(xi , ui) + Vf (XN)

s.t. xi+1 = f (xi , ui), g(xi , ui) ≤ 0
x0 = x , xN ∈ T

To introduce the concepts of elastic controllers we useModel Predictive Con-
trol (MPC)[3]. MPC provides flexibility in computational demands which
can be traded for performance and formal guarantees. Several parameters
can be tuned to allow execution in various contexts: rate of operation, pre-
diction horizon, model complexity, constraints, and feasibility requirements.
Extensions to robust control, ML, and large scale collaborative optimal con-
trol problems have a natural place in the cloud.

Selected Results

A novel distributed cloud platform incorporating IoT and next generation
wireless broadband has been developed. A define once, run anywhere soft-
ware strategy is implemented using a stream programming Platform-as-a-
Service framework. Software components can be relocated at any time while
keeping closed loop control operational.

o

o

o

Demonstrated dynamic deployment of time sensitive closed loop
control at 20Hz over the distributed cloud withmassiveMIMOwire-
less technology, and IoT components[2][3].

Push the boundaries of real-time control over the cloud. Propose flexible op-
timal control with variable execution characteristics and quality-elasticity in
a frequency range of 10-100Hz.

Cloud

Client

κr(·)

κl(·)

fx(x, u) fu(κl, κr)

Plantx

x̂

u

R
eq
u
es
t
A
P
I

Xi/Yi

Load
Balancer

Yi = f(Xi)Yi = f(Xi)Yi = f(Xi)

Quality-elastic MPC using
infinite cloud compute is lim-
ited by communication and
compute latencies. Graceful
degradation and selective ex-
ecution at the edge manages
uncertainty[4].

We propose a formal elastic controller around dual-mode MPC; robust to
response loss, and capable of handling an expanding state space.

0 2 4 6 8 10 12 14 16 18 20 22

−1

0

1

∎ Local invariant
∎ Control invariant

fu(κl , κr) = αi(
#»u k(k − i) − Kx̂ l im

k ∣xi−1) + Kx̂
l im
k ∣xk−1

The variable horizon dual-mode controller provides a formalization
of reliable elastic control. Optimal control is obtained using the cloud.
Locally, limited fallback performance is available through set-point
shaping. Invariant sets are imposed for recursive feasibility, stability
and robustness[5].
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Initially, reinforcement learning (RL) algorithms will be trained in
simulation environment.
The robot will not be included in the simulation, instead the
resulting policy will be expressed as a trajectory of one or two
controlled points.
Model-free and model-based RL methods will be explored.
Results from simulation will be used as a starting point for
learning with the real robot.

.

Reinforcement Learning for robotic manipulation of 
deformable objects

Rita Laezza

Developing foundational methods applicable to a wide-ranging class 
of objects, for deformation/shape control. 

Research Goal & QuestionsBackground & Motivation
Robotic manipulation of deformable objects has been largely
overlooked when compared with rigid objects.
Strategies developed for rigid objects cannot be directly
applied to their non-rigid counterparts.
There is a lack of general approaches that apply to different
deformable object types.
Sensing of deformable objects is challenging.
Modeling of deformable objects is also challenging.

Methods & Preliminary Results Roadmap & Milestones

The initial research focus will be limited to deformable linear
objects (DLOs).
For DLOs with large strain, it is interesting to study deformation
control, where the goal is to achieve a target plastic
deformation.
Due to effects of
elastic deformation,
there may be a
springback effect that
determines the final
configuration.

The main research questions to answer at this stage of the
project are:

Is it possible to learn a deformation trajectory?
Can these trajectories account for the springback effect?
Can the grasping points be included into the decision making?

There will be several stages with growing complexity, in order to
progress faster into the implementation of RL algorithms.

At each stage, there will be two additional cases studied:
1. Choice of grasping points.
2. Springback prediction after release.

In simulation
1 grasping point
Perfect information state

Stage 1

In simulation
2 grasping points
Perfect information state

Stage 2

In simulation
2 grasping points
Imperfect information state

Stage 3

With real robot
2 grasping points
Imperfect information state

Stage 4





Motion Planning for Self-Driving
Long and Multi-Body Vehicles

Rui Oliveira, KTH
Division of Decision and Control Systems

Tractor-trailers

References

Long vehicles (buses) and multi-body vehicles (tractor-
trailers) require a significant different way of driving.
The vast majority of motion planning research for self-
driving vehicles focuses on passenger vehicles.
We extend motion planning methods from passenger 
vehicles to buses and tractor-trailers.

Motivation and Research Goals

We present a method that takes full advantage of the particular
characteristics of buses, namely the overhangs, an elevated part
of the vehicle chassis, that can sweep over curbs.

Unlike other motion planning approaches, our method exploits
curbs and other sweepable regions, which a bus must often
sweep over in order to manage certain maneuvers.

The approach is formulated as an optimal control problem, and
solved using a Sequential Quadratic Programming approach.

Results:

Study of new driving objectives (optimization metrics) 
suitable for bus driving
Definition of new region classification schemes and vehicle 
body constraints
Tackled the task of bus driving in urban environments by 
mimicking bus driver behavior

Buses
We study suitable modelling and driving objectives for
articulated vehicles, such as tractor-trailers within motion
planning approaches. The existence of multiple vehicle
bodies introduces new challenges to the motion planning
task. Current research does not successfully address this
type of vehicles in urban driving scenarios.

Intermediate results:

Designed approximation techniques for the tractor-trailer
road-aligned vehicle model
Proposed and studied in detail a set of candidate
optimization objectives, while showing that current
approaches are not suitable for tractor-trailer vehicles
Tested the planner in simulated challenging scenarios

[Buses] Rui Oliveira, Pedro F. Lima, Gonçalo Collares
Pereira, Jonas Mårtensson, and Bo Wahlberg. "Path
Planning for Autonomous Bus Driving in Highly Constrained
Environments." In 2019 IEEE Intelligent Transportation
Systems Conference (ITSC)

[Tractor-trailers] Rui Oliveira, Oskar Ljungqvist, Pedro F.
Lima,, and Bo Wahlberg. "Optimization-Based On-Road Path
Planning for Articulated Vehicles." Submitted to 2020 21st

IFAC World Congress



Learning Contact-rich 
Manipulation Skills

Shahbaz A. Khader, KTH, ABB

Description:
Manipulation tasks that involve force interactions between the robotic manipulator and the manipulated object 
are perhaps the most difficult class of tasks that can be performed by a robot. Instead of manually solving the 
underlying control problem and coding it up in software, we look at how such control policies or skills can be 
learned by the robot autonomously.

Research GoalBackground & Motivation

Contact-rich manipulation tasks 
such as parts insertion, fitting 
etc., can be formulated as 
control policies or skills. A 
human worker develops such a 
skill after receiving formal 
instructions and subsequent 
practicing. So we ask the 
question: can a robot, provided 
with a high-level representation 
of the task, practice on its own 
and learn such a skill?

Probabilistic Model learning and 
Prediction

Stability Guaranteed Policy 
Learning 

The goal is to find practical reinforcement learning (RL) methods 
for learning to control robotic manipulator performing contact-
rich manipulation tasks.

Interesting aspects:
1. Model-based vs model-free 

methods
2. Model learning for contact 

tasks
3. Policy search vs online 

optimization
4. Role of simulation in RL
5. Safe learning

Learn a system of switching dynamics models (Gaussian 
Process Regression - GPR)
Probabilistic long-term prediction with discontinuous state 
evolution

* Khader, S.A., Yin, H., Falco, P. and Kragic, D., 2019. Probabilistic Model Learning and Long-term Prediction for Contact-rich 
Manipulation Tasks. arXiv preprint arXiv:1909.04915. Submitted to RA-L/ICRA

mGP: Calandra, R., Peters, J., Rasmussen, C.E. and Deisenroth, M.P., 2016, July. Manifold Gaussian processes for regression. 
In 2016 International Joint Conference on Neural Networks (IJCNN) (pp. 3338-3345). IEEE.

uANN: Chua, K., Calandra, R., McAllister, R. and Levine, S., 2018. Deep reinforcement learning in a handful of trials using probabilistic 
dynamics models. In Advances in Neural Information Processing Systems (pp. 4754-4765).

Learn Variable Impedance Control (VIC) policy

Parameter space likelihood ratio

Stability guaranteed exploration



Configurable observability for 5G orchestration
Simon Lindståhl

KTH Division of Decision and Control Systems, Ericsson Research

In modern networks, many different types of services, with different service requirements such as latency or reliability, are run in tandem. 
The practice of allocating network resources, physical or virtual, to different services in an effective way is known as orchestration. For 
orchestration systems to have full observability, many measurements are needed, but every measurement incurs cost to the network. 
This work, started in autumn 2019, is a collaboration between KTH and Ericsson with the purpose of investigating the tradeoff between 
performance gain, as provided by measurements, and measurement costs, when applied to 5G orchestration systems.

Challenges

Motivation

Investigate how models, trained in environments 
with full observability, perform in environments 
with limited observability.

Ensuring 5G orchestration ML-model 
performance in operational environments without 
harmful exploration of the state space.

Study the impact of network slice admission 
control and reconfiguration on QoS, QoE and SLA.

Study automatic configuration of observability 
functions in the network to limit resource usage, 
while maintaining model performance.

Main supervisors: Alexandre Proutiere (KTH), Andreas Johnsson (Ericsson)

Measurements in 5G network slicing

Contact
Simon Lindståhl

Ericsson Research 
simon.lindstahl@ericsson.com

Andreas Johnsson
Ericsson Research 

andreas.a.johnsson@ericsson.com

Alexandre Proutiere
KTH, Decision and Control Systems 

alepro@kth.se







Shared Situational Awareness 
under Complex Traffic Scenarios

Vandana Narri, Scania & KTH

This project focuses on automating operations of heavy-duty vehicles efficiently and safely under collaborative, yet
dynamically changing situations in highways and urban roads.
The objective of this project is to model, formalize, and analyse a shared situational awareness framework for the
extended vehicles, i.e., connected vehicles and infrastructure.
This framework will allow to orchestrate the utilization of shared resources in complex and crowded environments and to
define which kind of information each Connected and Autonomous Vehicle (CAV) and the infrastructure should share.

Background 

Motivation & Research goals

In the proposed scenario, the CAV (yellow) approaches the four-
way crossing and its sensor view (yellow shaded area) is affected
by occlusions (orange shaded areas) by parked cars and
buildings. A cyclist (orange circle) is approaching behind the
corner from the right, which cannot be detected with the on-board
sensors. Furthermore, a vehicle (purple) is approaching the
intersection, but its position is outside the host sensor
range.
The proposed framework should allow the CAV to overcome the
sensing limitations.

Experimental Scenario

V2V and V2X communication.

Christoffer Norén
Laura Dal Col

ATS Research, Situational Awareness and Decision Making, 
Scania CV AB

Karl Henrik Johansson
Jonas Mårtensson

Division of Decision and Control Systems, Electrical Engineering 
and Computer Science, KTH

The proposed experimental scenario.

Methods

Local CAV sensors typically provide a limited understanding of
the environment due to limited sensor range, blind spots, and
occlusions in the environment.
Vehicle to vehicle (V2V) communication and vehicle to
infrastructure (V2X) communication based on 5G or IEEE
802.11p standards, can help gather more information about the
environment, and address the shortcomings of CAV sensors.
The main research areas are connectivity (enabled by V2X and
V2V), cooperative driving, situational awareness and traffic flow
optimization.

Development Environment
Matlab/Simulink - Learn & Prototype.
Open-sourse simulator - Develop for Simulation Demo.
Scania autonomous vehicle and the test facility AstaZero,
Borås, Sweden.

MATLAB simulation of a traffic 
Driving 

toolbox.

Example of an open-source simulator for 
autonomous driving scenario - CARLA simulator.

The test facility AstaZero, Borås, Sweden for experiments.

Scania research prototype vehicle.

Multi-agents 
sensing modeling

Decentralized, centralized or distributed network.
Coordination and control of multi-agent systems.
Stability, robustness, and performance of multi-agent dynamic systems.

Algorithm for 
shared situational 

awareness

Fusion of the data from local sensors and external sensors.
Efficient integration of partial observations.
Sensor data : using heterogenous/ diverse sensors 

Interplay with 
decision-making 

and planning

The control architecture includes multiple hierarchical layers.
High comprehension of the environment should be able to improve the 
performance of layers.

Problem Statement  
How should a CAV comprehend and anticipate the environment
and various road users behavior in it?
- How can a CAV obtain and fuse data from local and external

sensors to improve situational awareness?
- How can the framework adapt to dynamically changing

scenarios?
- How can a CAV take action, based on the varying degree of

decisions?



Yaw-Moment Control At-the-Limit of Friction 
Using Individual Front-Wheel Steering and Four-Wheel Braking

Presented at the 9th IFAC Symposium on Advances in Automotive Control (AAC), Orléans, France, 2019 [1]

V. Fors1, B. Olofsson1,2, and L. Nielsen1

1: Linköping University, 2: Lund University

WASP Cluster: Automated Transport Systems

Introduction
Control of autonomous vehicles in safety-critical 
situations by combined braking and steering action. 
Closed-loop controller for safety-critical maneuvers 
at-the-limit of friction developed in [2].
Incorporate yaw control by use of the Modified 
Hamiltonian Algorithm (MHA) [3].

Combined Tire Forces
At-the-Limit of Friction

The steady-state longitudinal and lateral tire forces 
are both functions of the longitudinal and lateral tire 
slips.
Combinations of different tire slip and many 
parameters make a full tire model difficult to use in 
real-time applications.
Assuming the desired tire-forces are at the friction-
ellipse limit, the modeling is simplified.

Modified Hamiltonian Algorithm
Control allocation achieved by minimization of a 
Hamiltonian function .

To include yaw-moment 
control, the Hamiltonian 
to minimize is

is adapted online such that the 
yaw moment tracks a desired 
yaw moment as

Cascading the Hamiltonian to 
individual wheels gives

Control Layout

Compute acceleration reference 
for center of mass.

Compute desired rear slip angle 
, feedback , apply MHA.

Compute desired front slip 
angles , feedback steering 
rate , compute desired 
braking torques .

Friction-limit tire model and friction-ellipse assumption enable 
explicit computation of desired slip angles and braking forces.

Results
Scenario: Minimize deviation from center of lane, driving 
at 110 km/h when the car enters a turn with radius 90 m.

References
[ -moment control at-the-limit of friction 
using individual front-wheel steering and four- 9th IFAC 
Symposium on Advances in Automotive Control (AAC), vol. 52, no. 5, Orléans, 
France, 2019, pp. 458 464.

-angle feedback control for autonomous 
safety-critical maneuvers at-the- 14th International Symposium 
on Advanced Vehicle Control (AVEC18), Beijing, China, 2018.
[3] Y. Gao, M. Lidberg

MM Science J., no. 
MAR 2015, pp. 576 584, 2015.








