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Spatio-Temporal Learning and Reasoning

for Situation Awareness in Robotics
||. LINKOPING Mattias Tiger, LinkOping University

UNIVERSITY

Awareness of entity motion is central to robot safety. This is true regardless of whether the robot is driving, flying or working alongside humans. It is
important to recognize common motion patterns and to discover new ones. Furthermore, the important ability to anticipate what will happen next
requires good predictions of future movement. It is also useful to be aware of how predictable other entities are, and to detect abnormal behaviors.
Accurate awareness of the current situation is necessary for robust, efficient and safe decision making and control. Our focus is on trajectory-based
approaches for continuous learning using probabilistic machine learning techniques, and on integrating probabilistic and logical stream reasoning.

Probabilistic and predictive stream reasoning for runtime verification

Logical constraints can be used to specify safe operating behaviors and assumptions
about the environment. We have proposed P-MTL [3], a metric temporal logic for stream _
reasoning (incremental reasoning over rapidly-changing information) over probabilistic \
and predicted states. This addresses two important problems in Al; integrating logical and

probabilistic reasoning and integrating reasoning over observations and predictions. This
allows a robot to explicitly reason about the uncertainty of the world, the expected
change of the world and the quality of its observations and predictions.

collision: false Pr(collision) = 0.1 Pr(collision) = 0.4 Pr(collision soon) = 0.5 Avre prediction and reality similar?

Learning and recognizing trajectory-based spatio-temporal activities
such as motion patterns

We have proposed an online unsupervised framework that learns a
probabilistic representation of observed spatio-temporal activities and
their transitions from observed trajectories [1]. It can recognize activities
and predict activity chains. Bayesian networks are used to model the
transition graph and Gaussian processes (GP) to model atomic activities.

We have developed Gaussian process trajectory modelling tools for

merging and separating serially and in parallel connected models. This
includes an efficient technique for approximating mixtures-of-GPs and

efficient online trajectory model learning using GPs [2].

We have further proposed extended GP-based models and methodology
to motion patterns in large-scale complex road structures [4].
Such topology necessitates sequential local models.

Motion pattern recognition includes:
clustering, classification, prediction, abnormality detection

Trajectory-based motion planning and control in

large-scale, complex and dynamic environments

We have proposed [5] a principled solution to motion
planning with dynamic obstacle avoidance by using a
unified optimization-based motion planning and control
The problem: Fly-to(x) architecture, where both layers use the system dynamics

without colliding

Full trajectory planning and tracking

to generate and execute feasible trajectories in real-time. | ECEEECEIETANIERIG

The plans are made with respect to time in several ways:
In terms of predicted future movements of agents, time
duration of actions and by the ability to plan to wait.

Motion primitives (full trajectories) are generated offline
using numerical optimal control and then used in online
graph-search for finding feasible and cost-efficient plans.

[1] M. Tiger and F. Heintz, Towards unsupervised learning, classification and prediction of activities in a stream-based framework, SCAI 2015.
I [2] M. Tiger and F. Heintz, Online sparse Gaussian process regression for trajectory modeling, FUSION 2015.
[3] M. Tiger and F. Heintz, Stream Reasoning using Temporal Logic and Predictive Probabilistic State Models, TIME 2016.
[4] M. Tiger and F. Heintz, Gaussian Process Based Motion Pattern Recognition with Sequential Local Models, IV 2018.
[5] O.Andersson, O. Ljungqvist, M. Tiger, D. Axehill, F. Heintz, Receding-Horizon Lattice-Based Motion Planning with Dynamic Obstacle Avoidance, CDC 2018

[6] M. Selin, M. Tiger, D. Duberg, F. Heintz, P. Jensfelt, Efficient Autonomous Exploration Planning of Large Scale 3D-Environments, RA-L & ICRA 2019




Short-term Mine Scheduling AL 1D HD
using Constraint Programming FAIDPD

Max Astrand, Mikael Johansson, Alessandro Zanarini
max.astrand@se.abb.com, mikaelj@kth.se, alessandro.zanarini@ch.abb.com

ABSTRACT

Manual short-term scheduling in under-
ground mines is a time-consuming and error-
prone activity. We use Constraint Program-
ming to automate the scheduling process:
deciding what to do where and when.

We extend previous work by account-
ing for fleet travel times, and by introduc-
ing a new model based on solving a related
scheduling problem and transforming its solu-
tion back to the original domain. In addition,
a neighborhood definition is introduced to
optimize using Large Neighborhood Search.

Results show that the proposed method
scales to realistic problem sizes, and that the
solutions obtained are of high-quality.

KEY RESULTS

e The mine scheduling problem resembles a rich variant of a k-stage flow shop,
with a mix of interruptible and uninterruptible jobs, periodically induced machine
unavailabilities, after-lags in some stages, sharing of (certain) machines between
stages, and sequence-dependent setup times due to the travel times of the mobile
machines [1].

e Underground mines can have road networks spanning several hundreds of kilometers.
Therefore, to ensure that schedules are feasible to operationalize, we extend previous
work [2] by including travel times of the mobile machines in the constraint model.

e In addition, we propose a new approach based on first generating solutions to
a modified wuninterruptible scheduling problem without blast windows. A post-
processing step inserts blast windows and transforms the solutions to solve the
original problem. To further improve the obtained schedules, Large Neighborhood
Search is used with a domain-specific neighborhood definition based on relaxing all
variables corresponding to jobs scheduled at a random subset of production areas.

e We can find high-quality schedules to realistic instances, generated using data from
an operational mine, including more than 200 jobs. Compared with a common
constructive heuristic [3], solutions are found within minutes exhibiting ~ 7% lower
objective value. Studying the optimal solution to a relaxed problem, we note that
on a realistic instance we are at most ~ 12% away from optimality.

REFERENCES:

[1] Astrand, M., Johansson, M., & Greberg, J. (2018). Underground mine scheduling modelled
as a flow shop: a review of relevant work and future challenges. Journal of the Southern
African Institute of Mining and Metallurgy, 118(12), 1265-1276.

[2] Astrand, M., Johansson, M., & Zanarini, A. (2018, June). Fleet Scheduling in Underground
Mines Using Constraint Programming. In International Conference on the Integration of
Constraint Programming, Artificial Intelligence, and Operations Research (pp. 605-613).
Springer, Cham.

[3] Pinedo, M. (2012). Scheduling (Vol. 29). New York: Springer.



Learning Task-Oriented Grasping from Human Activity Datasets

Mia Kokic, Danica Kragic, Jeannette Bohg

Task-Oriented Grasping (TOG): Object grasped such 1. Process RGB datasets to obtain 6D hand and object poses and shapes. A framework for estimating hand pose and

that it can be used for a task. 2. Use this data to learn task-compliant regions on object for grasping. configuration as well as object pose and shape from a
single RGB image.

Competitive results to state-of-the-art[1] and
generalization to novel object instances from three

A real-world dataset categories.

Learned TOG models from a challenging real-world
dataset of humans manipulating objects.

HAND-OBJECT POSE AND SHAPE ESTIMATION

To infer: Where and how to the place the hand.

But: Data Collection is tedious.

Core Question: Can we leverage RGB human activity Real robot demonstrations of task-oriented grasps of

distribution of human

datasets to teach robots TOG? (grasps on a knife previously unseen object instances from a given
7
A & category.
Yes! But we need to lift them to 3D [1]Y. Hasson, G. Varol, D. Tzionas, I. Kalevatykh, M. J. Black, I. Laptev, and C. Schmid, “Learning joint
° : | ] fion of hands and manipul: Jin i the IEEE C omputer Vision
n real knife nferred grasp and Pattern Recognition , 2019, pp. 11 807-11 816.
real knife
from vision egion

TASK-ORIENTED GRASPING

System Overview

HAND-OBJECT POSE AND SHAPE ESTIMATION TASK-ORIENTED GRASPING
FHB SYNTHETIC DATASET
= {Xo0.X§, )
< H,0, M} {M,g,t}
© 4 H
=
{X, XG, H}
S HAND | ’
c —HAND £} X¢ HAND PREDICTOR) /T7
g —»DETEC[ {{X ;“}}] OBJECT PREDICTOR g]' TOG-T CNN — .
= MAsK reNn U 0210
GUN-71 PROCESSED GUN-71
Method
Real data: FHB [2] contains video sequences from 1. Train a CNN that predicts hand poses and
ego-centric perspective; hands are annotated with 3D configurations + object poses and shapes from RGB
joint positions but object annotations are available for images.

§i~io

N0 «
—>1/0
§ §>o(, - .N .

2. Process a real-world RGB human activity dataset [3].

only 4/26 instances. . Xo .

el G

X =
X5,

<

T

oo ot e

Synthetic data: easy to collect object annotations, but
the data differs from real RGB images (sim-to-real gap)

My

—>»>
A combination of synth and real data ensures
generalization to novel objects and novel hand poses. 3. Train a category-specific CNN that predicts if a grasp -
(2] G. Garcia-Hernando, S. Yuan, S. Baek, and T-K. Kim, "First-person hand action benchmark with rgb-d videos H H B B
4t o o AP 206 5 0547 on a novel object is suitable/unsuitable for a task.
(3] G. Rogez, 1. 5. Supancic, and D. Ramanan, everyday hands in images,” in

Proceedings of the IEEE interational conference on computer vision , 2015, pp. 3889-3897.
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e Semi-supervised multitask learning

UNIVRSES Miquel Marti 12 Alessandro Pieropan®  Hossein Azizpour!  Atsuto Makil
'KTH Royal Institute of Technology, Stockholm, Sweden 2Univrses AB, Stockholm, Sweden

Multitask learning offers efficient deployment of models for complex scene We compare models on MultiMNIST([6,7], which consists of two
understanding but introduces new practical issues, which are key to enable classification tasks of digits partially overlaid on top of each other — L
its use in the industry. top-left digit, R bottom-right. We simulate the partial labelling for one task
] ] by keeping only a percentage of the labels for this task. For the sample and
Multitask Igarnmg mod.es: o . task label pairs where the label is missing we simply have zero loss. We
> (a) - Single set of inputs with different, overlapping sets of labels consider three cases: fully labeled, 50% of labels and 10% of labels.
» (b) - Multiple sets of inputs with different sets of labels, non-overlapping
» (c) - Same as (a) with labels for one task covering whole input set, for We use Virtual Adversarial Training[1] on the partially-labeled task only
another only partially. Occurs naturally due to different labelling costs when there is no label for a given sample. We compare uniform task weights
for different tasks. to searching over static weights. We report mean accuracy and standard

deviation over 9 runs on the test set with the hyper-parameter configuration
giving the best validation accuracy.

(3) (b) ()
Figure: Different multitask cases for datasets (area within circles) and label sets (shaded
discs).

ApproaCh Figure: Mean average accuracy of both L and R tasks on 9 runs 4 standard deviation for

different ratios of labels for both L (left) and R (right) tasks for uniform multitask loss,
Multitask models with shared encoder. We want to leverage unlabeled data weighted loss and both with VAT loss on unlabeled samples.
for partially labeled task too. Use both distant supervision from multi-task
learning a.nd con5|stency.regula.rl%atlon seml—supeers.ed learning methods
such as Virtual Adversarial Training [1] on such partially labeled samples for
the task with missing label.
» Differences between methods indicate that combining VAT and

multi-task might lead to small improvements in most cases. However,

results are within standard deviation over different seeds and increase

the variance of the experimental results.

» Larger improvements happen in the experiments with tasks with fewer
labels, suggesting that the method might be more effective in the less
supervised regimes.

» More experiments with different datasets are needed in order to validate
this preliminary results. Also, experiments for cases with even less labels
for one of the labels should be carried out.

Figure: Batch of two images passed to the multi-task model with two tasks. For the outputs
without corresponding labels the VAT loss is used. References

1. T. Miyato, S. Maeda, M. Koyama, and S. Ishii. Virtual adversarial
training: a regularization method for supervised and semi-supervised
learning. In ICLR 2016.

Related work

Some works have addressed the problem of unbalanced label sets in 2. Dong-Hyun Lee. Pseudo-Label : The Simple and Efficient

multi-task learning before with a Pseudo-Labels [2] in Natural Language Semi-Supervised LearningMethod for Deep Neural Networks. In ICML
Processing [3] and in computer vision in [4], pseudo-labeling one new sample 2013 Workshop.

at each epoch and adding it to the training set, and in [5], using a 3. Marek Rei. Semi-supervised Multitask Learning for Sequence Labeling.

knowledge distillation loss with previous snapshots of the model. In ACL 2017.

/

4. N. Khosravan and U. Bagci. Semi-supervised multi-task learning for
lung cancer diagnosis. In EMBC 2018.

5. D. Kim et al. Disjoint Multi-task Learning between Heterogeneous
Human-centric Tasks. In WACV 2018.
6. Sabour, N. Frosst, and G. E. Hinton. Dynamic routing between
] capsules. In NIPS 2017.
7. O. Sener and V. Koltun. Multi-task learning as multi-objective

optimization. In NeurlPS 2018.

Figure: Samples from MultiMNIST dataset.

This work was partially supported by the Wallenberg Al, Autonomous Systems and Software Program (WASP)



Robot Learning of Symbol Grounding
in Multiple Contexts Through Dialog

Mohamadreza Farid Ghasemnia
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Advisors: Alessandro Saffiotti, Lars Karlsson
Project partner: Bram Willemsen (KTH)

Center for Applied Autonomous Sensor Systems
Orebro University, SE-70182 Sweden

PROBLEM STATEMENT

How should a robot ground symbols of a
situated dialog, and in multiple contexts?

User: Give me the red?
Robot: Okay, but which one do you mean
now?

e Plans for discourse: Participants in a dis-
course use actions (utterances) to accom-
plish a goal (intent of dialog).

e Dialog: Discourse between two or more
participants, eg. spoken dialog.

CURRENT SETUP WITH PEPPER

e Common sense in dialog: A robot should
be able to understand the user’s intent, and
talk in such a way that the user under-
stands. Participants in a dialog must have
common sense, or they have to align their
belief so they can arrive at a common inter-
pretation.

e Situated dialog: A robot should be able
to process its perception to understand its
surrounding.

e Context: various information of a situated
dialog can be found in "context", such as

e Source of uncertainty: In a situated dia-
log, different types of noise make a robot
uncertain, eg. ASR . Moreover, different
sources of information may be in conflict
and may confuse the robot about which in-
formation to rely on. Possible sources in-
clude:

— An a-priori knowledge base
— User assertions in another context

— User assertions in current context

the position of the robot and user, informa- Approach

tion corresponding each object, user’s pro-
file, time and etc.

e Learning symbol grounding in multi-
ple contexts: Grounding language in per-
ception may be affected by different types
of uncertainty.

Which object the user is talking about?
What is the semantic of a word?

A robot should be able to learn how to re-
move such uncertainties.

Develop a precise formulation of context,
ontology and their relation, which shows the
most promising assertion in the ontology
with respect to the context.

To use context to help the robot decide on
which information to rely, or else to ask a
question to obtain new information.

CURRENT PLATFORM

e Subscribing to Pepper camera and micro-
phone

Pre-processing of microphone signal

Google ASR
e Managing multiple answer generators:

— General dialog handler
— Object descriptor handler

— Perceived object handler

Pepper Text to Speech

CURRENT SHOV

Hello Pepper!

‘ What can you see?

I see book, pen and desk. ‘

‘ The desk is out of order! |

Oh! Ok, I save the desk as improper. ‘

e Different types of uncertainty exist.

e Dialog is a shared plan among partici-
pants, for a common goal.

e Ontology and context are our two key con-
cepts.

e Interpretation can be found using context.
e Interpretation changes upon context.

e A robot should know what does each word
mean in each context.



Smart Technologies for unmanned ships
Marten Lager, Lund University

Computer Science Department

-
Research Area

In this project, methods are presented to enhance the capability of two building blocks that are
important for autonomous ships; a positioning system, and a system for remote supervision.

GPS-free navigation by fusion of
bottom depth and magnetic field

with CNN support

Overall description

Uses Bayesian calculations to
compare the bottom depth and
magnetic field measurements
with  known sea charts and
magnetic field maps, in order to
estimate the position. To optimize
how the sensor data shall be
fusioned, CNN adjusts the weights,
after analyzing the map around the
estimated position.

Our main contribution
State-of-the-art techniques for
this method normally use low
accuracy navigation sensors
and  high-resolution  maps,
which can hardly be used in
real life. We rely on available
normal sea charts and low-
resolution magnetic field
maps instead.

Bearings to
visual
landmarks

Estimation of
true position
(weighted sum)

Remote
supervision in VR

What has been done

Three GUI types have been created for remote supervision of an
Unmanned Surface Vessel via a low bandwidth connection. Two in
3D (presented in VR and on a laptop) and one traditional 2D GUI.
The GUIs have been compared in a user study.

Why remote-supervision?
* Humans can handle complex dynamic environments

Why VR?

» Can provide a realistic environment comparable to what the
operator is used to on a real ship

» Can augment information and guide the operator

* Do not need to transfer all videos, as most objects are already

known in the Virtual World.

First Person View Tethered View Exo-Centric View

Results

* Good performance when com-
paring bottom depth with sea
chart.

* Accuracy and robustness are
increased when fusing bottom
depth and magnetic field
measurements.

User Study Results

The users of the two 3D GUIs were better at reacting to dangerous
situations than Traditional GUI users, and they could keep track of
the surroundings more accurately. The users experienced the two
3D GUIs to be more Easy to Use, and believed the 3D GUIs, and
especially the VR version to be the Best Expert Tool after several
hours of training.

marten.lager@cs.lth.se

Department of Computer Science
LTH, Lund University
Sweden

Webpage:
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Introduction and background

With the new radiotherapy device Elekta Unity, a linac
with an integrated MRI unit, it is possible to do
imaging of the patient during beam delivery. This
makes it possible to adjust the treatment in real time
in response to patient and organ motion.

Figure 1: Elekta Unity.

A big advantage of this type of real-time adaptive
radiotherapy is that the radiation field can be focused
on the actual tumour, avoiding margins which are
currently being applied to compensate for e.g. organ
motion.

Figure 2: Left image: Currently a larger radiation field is used to compensate for
motions. Right image: If the motion is known the margin can be decreased.

This requires fast and reliable algorithms for motion
modelling. As a first step towards a full 3D motion
model, we have investigated a state-of-the-art model
in computer vision to estimate the motion between
sequential 2D images on a pixel level. Once the
estimation of the motion in 2D is good enough, the
next step will be to reconstruct the entire 3D anatomy
using the estimated 2D motion as input. The 3D
images are needed in order to perform treatment plan
adaptation and, as a QA tool, dose calculation in real
time.

Method

The model we have investigate is the PWC-Net [5].
PWC-Net is a end-to-end deep learning algorithm
based on techniques from traditional optical flow
methods. The model takes two frames from e.g. a
video sequence as inputs and the output is the
estimated motion/flow for every pixel between the
frames. An illustration of the net is shown in Figure 3

stimation

Figure 3: [llustration of PWC-Net.

The different components in the PWC-Net are:

» Pyramid: The pyramid contains of convolutional
layers that downsamples the frames to six feature
levels. The number of channels in each layer is 16,
32, 64, 128 and 196.

» Warping: Warping by use the features of the second
frame and the upsampled estimated flow from the
previous level.

» Cost volume: Correlation between features in the
first frame and warped features from the second
frame.

- Deep learning motion estimation

Real Time Image Guided Radiotherapy

Niklas Gunnarsson, Thomas Schon, Jens Sjolund

Department of Information Technology, Uppsala University

Result

» Optical Flow estimator: The cost volume, features of Figure 6-7 show the learning curve and EPE for both

the first frame and the upsampled estimated flow
from the previous level are inputs to a multi-layer
CNN. The output is the estimated flow at specific
feature level with dimension height x width x 2.
The optical flow estimator can also use DenseNet
connections [3].

> DenseNet: The inputs to every convolutional layer

are the output and the input from its previous layer.

Conv. layer

Figure 4: DenseNet connection.

» Context network: Contains of seven convolutional
layers with different dilation constants.

Implementation

Our implementation of PWC-Net follows the
standard procedure described in the article [S]. The
implementation was made using Tensorflow 2 and
trained on a Lambda Labs Quad workstation with a
GeForce GTX 1080 Ti graphic card. One of the
challenging part for optical flow and supervised
machine learning methods in general is the lack of
ground truth training data. For that purpose
Dosovitski et al. created different synthetic datasets
[1]. Some of the datasets are FlyingChairs,
ChairsSDHom, FlyingThings3D, Driving and Monkaa.
For our model we used a mixed of FlyingChairs and
FlyingThings3D for training. The total size of the
dataset is 43 010 where 97% was used for training and
3% for validation. To fit the investigated domain of
medical images the dataset was converted to grayscale
images and scaled to 256 x 256 pixels. Figure 5 shows
one example from each set.

Figure 5: First frame, ground truth optical flow and second frame is shown for one
sample for each dataset.
The loss function for used for training is a weighted
cost between the estimated flow, w, and ground truth
flow, wh,; in each level (J) of the pyramid

I
L©) =) o) |wh(x) — wor(®)!2 +v1O2- (1)
=l x

where © is all parameters in the model. I is set to 2
and the weights ag = 0.32, as = 0.08, ay = 0.02,
az = 0.01, az = 0.005. For the regularization term
~v = 0.0004. Another metric to measure the quality
for estimated optical flow is to use the endpoint error
(EPE) between the estimated flow, (#, &) and the
corresponding ground truth, (v, u)

EPE= /(i —uc)? + (0 —ver)2. @
When ground truth values are unknown the quality of
the estimated flow are measured by warping the first
frame using the estimation and compute image
similarity with the second frame. Such metrics are

structural similarity index (SSIM) [6] and mean
square error (MSE) [4].

models.

Figure 6: Learning curve and EPE for PWC-Net without DenseNet.

Figure 7: Learning curve and EPE for PWC-Net.

The model was tested on a medical head and neck
MRI images set including the original image named
reference image and an applied sine flow named
moving image. The result was compared with a
traditional optical flow algorithm called Farnebick [2].
Model SSIM | MSE | t(s)
PWC w/o DenseNet |0.9267| 2.521 |0.050
PWC with DenseNet|0.9332| 2.408 |0.045
Farnebick 0.9317/2.5020(0.034

Table 1: Structural similarity index (SSIM), mean squared error (MSE) and
estimation time (t(s)) for the different algorithms.

[lustrations of the estimated flow and warped images
for both models and Farnebick are shown in Figure 8

Figure 8: The reference image, estimated flow, moving image and warped image
for the different algorithms.

Conclusions and further work

The result looks promising. With no information
about the medical image domain the model estimates
flow with similar performance as a well known optical
flow method (Farnebick). However the evaluation
was performed on one synthetic case and needs to be
evaluated further. It would be of interest to fine-tune
the model with natural or synthetic medical images
and evaluate the result.
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Robust Route Planning for Electric Vehicles

Niklas Akerblom

Chalmers University of Technology

Description

Research Questions

The purpose of this project is to develop computationally
efficient, accurate and robust algorithms for electric vehicle
route planning and navigation. This combines combinatorial
optimization with machine learning methods for modelling
uncertainties in e.g. travel time, energy consumption and
charging station performance.

Motivation

A common concern that people have about fully electric ve-
hicles is the so-called "range anxiety". Due to the historically
high cost of batteries, the driving range of electric vehicles
has generally been much shorter than that of conventional
vehicles, which has resulted in a fear of being stranded when
the battery is depleted. It is possible to partly alleviate these
concerns by providing improved navigation algorithms and
route planning systems.

While batteries in newer electric vehicles often have higher
capacity than in the past, a key difference which still exists
between conventional combustion engine vehicles and bat-
tery electric vehicles is that charging a battery is much slower
than refueling, even with fast charging technology. When
charging is necessary during a trip, the charging time then
becomes a significant part of the total travel time.

This motivates the inclusion of charging locations in route
planning algorithms for electric vehicles. Since battery en-
ergy is a finite resource which is continuously depleted dur-
ing a trip, it is natural to model the problem of finding the
most efficient feasible path between two points as a short-
est path problem with resource constraints. An additional
factor is that while there are often many possible choices of
charging stations for a complete trip, the density of charg-
ing station locations may be sparse in certain regions, which
means that choosing an occupied or otherwise unavailable
charging station may also incur a significant cost in travel
time.

The project is coordinated by Volvo Car Corporation and is
conducted in cooperation with Chalmers University of Tech-
nology.
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With funding from the Strategic Vehicle Research and Innovation Programme (FFI):

FFI

= How can route decision making be supported for
individual electric vehicles or autonomous fleets of
electric vehicles?

= How do we handle the relatively long charging times of
electric vehicles and the severe consequences of
unavailable charging stations in a robust manner?

= How do we integrate accurate models for electric vehicle
energy consumption and charging into an efficient
approximate solution for a constrained shortest path
problem, while avoiding unacceptable tradeoffs in terms
of computational complexity?

= How can we incorporate cost effective exploration and
data collection for such models into our route planning
methods, without making significant compromises to the
travel time and energy costs of individual consumers?

Approach & Status

Several promising avenues of research have been identified
and are being pursued. For example, recent state-of-the-art
papers show that road network graphs can be preprocessed
with contraction hierarchies and depletion profile informa-
tion to speed up constrained shortest path queries. [1]

We plan to extend these deterministic methods with prob-
abilistic models for e.g. energy consumption, and we are
currently evaluating efficient ways of updating such models
with new information.

References
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Consumption Profiles in Route Planning for Electric Vehicles: Theory and
Applications.
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Learning with noisy labels
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In the paradigms of supervised, semi-supervised or active learning
with machine learning algorithms in general and deep neural nets in
particular, the default models assume that the given annotations of
training data are correct. However, this is not always the case. With
a lower requirement on the quality of the data, the higher amount of
data is available at the same price. The goal of our project is to get
a better understanding of how label noise affects supervised learning.
Some of the questions that we are interested in are:

e How to identify misclassified samples efficiently?
e How to make a model more robust against misclassified data?
e Does the robustness depend on the distribution of the noise?

e How do different types of regularisation techniques affect the
robustness?

~

e We extend the typical cost function for a neural network and
put weights on the training points:

A
min > w,L(,,0) + %(wi — 124 S0Pt @ = 1

0,w: w>=0

Figure 1: The accuracy on a test set during training for different penalty’s
on the CIFAR10 dataset. Left: With 20% label noise on training data.
Right: With no label noise on training data.

e Advantages with the new cost function: Both experimental and
some theoretical results seam to show that the training will
become more robust against label noise.

The model can converge to an optimum which will give a more
theoretical understanding of our model.

e Disadvantages with the new cost function: The training will be
slower since we have introduced more parameters.
We will get at least one extra hyperparameter that needs to be
optimized.

\

e How well does this generalize
to a multiclass problem?

e How should w; be optimized?

e By having different "weight
center-points" for different
classes, could we get a more
fair representation of class
sizes?

e There is nothing that says
that the penalty (w; — 1)? is
optimal. In a practical sense
it’s not since it requires the
constraint w; > 0 in the op-
timization. Is there a bet-
ter penalty that is both nu-
merical stable and has a good
mathematical justification to
be used.

e How sensitive is the method
to variations in o and A7 Is it
important to find a true op-
timal value of these parame-
ters?

N

[1] Koh, Pang Wei, and Percy
Liang. "Understanding black-
box predictions via influence
functions." Proceedings of the
34th International Confer-
ence on Machine Learning-

Volume 70. JMLR. org, 2017.

[2] Li, Mingchen, Mahdi
Soltanolkotabi, and Samet
Oymak. "Gradient descent
with early stopping is prov-
ably robust to label noise
for overparameterized neural
networks." arXiv preprint

arXiv:1903.11680 (2019).




Learning Safe Decision-Making for Autonomous Robots

Olov Andersson, Linkdping University

Artificial Intelligence and Integrated Computer Systems
Main advisor: Patrick Doherty

Motivation & Research Goals

Robots are increasingly expected to go beyond controlled environments in laboratories and factories, to enter real-world public spaces
and homes. However, robot behavior is still usually engineered for narrowly defined scenarios. To manually encode robot behavior that
works within complex real world environments, such as busy streets or work places, can be a daunting task. The aim of this research is
to examine efficient methods for automatically learning robot behavior under uncertainty, lowering the costs of deploying robots to
the real world. A key focus is satisfying the safety requirements and the resource constraints imposed by autonomous robots.

Methods

Formally, we seek general-purpose approximations to planning
and control under uncertainty

...with the computational limitations and safety constraints
of real robot platforms

These are typically intractable. We instead leverage both
machine learning techniques, and engineering techniques
from robotics and control, to compute approximations that
satisfy safety constraints. These have certain robustness
advantages over deep reinforcement learning approaches [5].

In particular we draw upon:

« Bayesian Learning & Bayesian Optimization

* Deep Learning & Deep Reinforcement Learning

« Trajectory optimization & Model-Predictive Control (MPC)

References
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Selected Results

Collision avoidance in mixed human-robot environments is one
example of a behavior that is difficult to manually engineer
* There is considerable uncertainty due to inexact models, sensors,
and especially difficult-to-predict human motion
* Need to consider dynamics constraints
to find safe trajectories through busy
workplaces or streets

Example: Warehouse scenario

* Humans and UAV in small workspace

+ UAV wants to pick up green packages

* 3 non-cooperative moving obstacles given
destinations randomly

Summary of contributions (see [1]):

* Novel constrained Bayesian policy optimization to find
deterministic MPC approximations that satisfy the safety
constraints under uncertainty

» Demonstrated real-time MPC solution to non-cooperative collision
avoidance under uncertainty and dynamics for flights with a real
quadcopter

MPC with safe collision avoidance
possible in real-time, but still requires
capable on-board CPU.
*  Want to synthesize behavior for
smaller robots and embedded ———

systems. L J
7 cm Bitcraze Crazyflie

Summary of contributions (see [2]):

* Learn fast deep neural network approximations for problems with
safety constraints

* Demonstrated by embedding neural network for collision avoidance
scenario on-board nano-quadcopter microcontroller

In a WASP collaboration we also considered
lattice approximations to motion planning in
such complex dynamic environments.

Summary of contributions (see [4]):

* Real-time 3D motion-planning in
time for moving obstacles

» Unified optimization-based graph
planning & control architecture

Another interdisciplinary collaboration
considered automating aerial drone search for
victims after disasters (e.g. earthquakes).

Summary of contributions (see [6]):

» Real-time learning and inference in
structural spatial point process model

» Minimized expected victim harm via
real-time Monte-Carlo tree search




Motion planning and sensing-aware model predictive
control of complex tractor-trailer combinations

Oskar Ljungqvist and Daniel Axehill

Motivation

The design of reliable path-following controllers is a key ingredient
for successful deployment of autonomous tractor-trailer vehicles. It
is challenging since the vehicle is unstable in backward motion and
because the tractor has steering limitations. Additionally, optical
sensors with a limited field of view (FOV) has been proposed to solve
the joint-angle estimation problem online, which introduce restric-
tions on which states that can be reliably estimated. Moreover, in re-
centyears there has been an increased interest for long tractor-trailer
combinations to meet efficiency demands related to transportation.
To improve these long vehicles ability to maneuver in confined envi-
ronments, some trailers can be equipped with steerable wheels.

Sensing-aware model-predictive path-following control
Problem: Given a nominal path (x,(-), u,(-)) for a reversing general
2-trailer (G2T) vehicle, design a path-following controller that mini-
mizes the path-following error Z(t) = x(t) — ,(s(t)) while satisfying
the vehicle’s sensing (s, 52) € P and input constraints u € U.
Solution: Acontroller based on model predictive control (MPC) that
uses sensing and jack-knife preventing constraints:

e Stability region for computed using closed-loop simulations

» Based on the vehicle’s parameters and the sensor’s FOV
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Illustration of sensing geometry (left) and modeled joint-angle constraint (right).
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The MPC controller is u(t) = w,(t) + @), where @, is computed by
solving the following optimization problem online

N-1
@l Pyiy + Y (&) Qi+ al)
k=0
subject to &y = FrZy + Grtg, ()
(Bsg, Box) €Pr, @r€Up, k=0,1,... N—1,

:i() = :i(t)

minimize

Field experiments using proposed MPC controller

e Implemented on full-scale test
vehicle together with Scania CV

e Benchmarked and shown to
outperform an LQ controller

) X <L Joint-angle ajectories
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Trajectory planning for multi-steered N-trailer vehicles
Problem: Develop a trajectory planner for multi-steered N-trailer
(MSNT) vehicles, composed of a car-like tractor and N trailers with
fixed or steerable wheels.
The trajectory planning problem is given by
te
minimize  J =tg+ /( l(z(t),u(t))dt

ul), tg 0
subject to  @&(t) = f(a(t), u(t)), )
z(0) =z, =(tc) = xq,
z(t) € Xiree, ul(t) €U.
Solution: Combine a lattice-based trajectory planner with an opti-
mal control problem (OCP) step:
¢ Lattice planner solves combinatorial aspects
* OCP step refines the solution to local optimality

Results for a multi-steered 3-trailer vehicle

e Last trailer is steerable, making
MS3T vehicle (blue paths) more Table 1: Results from parallel
flexible than single-steered 3- parking planning scenario.
trailer (SS3T) vehicle (red paths) ~ Vehicle Jp  Jy  7Timp

« Objective value after OCP step ~ SS3T 270.6 122.4 -55%
(Jr) is reduced (7imp) compared ~_MS3T 207.9 98.1 -52%
to state-lattice initialization (.Jp)

20 40 60 80

-80 -60 -40 -20

An MPC controller for multi-steered N-trailer vehicles
Problem: Execute a nominal path (x,(-), u,(-)) for an MSNT vehicle
with a small path-following error &(t) = x(t) — x,(s(t)) while satisfy-
ing constraints on states x(-) € X and control input u(-) € U.
Solution: An MPC controller similar to (1).

Results for a multi-steered 2-trailer vehicle

e Last trailer is steerable, benchmarked
with a single-steered 2-trailer vehicle 2
and with an LQ controller = 1

MS2T-MPC (blue) has a larger stabil- £, 0 .
ity region compared to SS2T-MPC (red) «5 1

and MS2T-LQ (green) _9

e The trailer steering drastically re-
duces the transient response of all B2 [rad]
path-following error states
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Autonomous-Vehicle Maneuver Planning
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Pavel Anistratov
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pavel.anistratov@liu.se

INTRODUCTION & BACKGROUND

e Motion planning is important for au-
tonomous vehicles to allow safe and reliable
operation under various conditions
Motion-planning problems could be formu-
lated and subsequently solved as an opti-
mization problem

e Computational challenges are often associated
with solving optimization problems in online
scenarios

e Paper [2] shows a method for improving the
computational performance by splitting the
full maneuver into several smaller maneu-
ver segments

e Alternating Augmented Lagrangian Method
[3] is adapted to allow parallel computation
of the maneuver segments

IDEA OF THE METHOD

n [m]

b ow e oo

'
0 10 20

The method is illustrated for a double lane-
change maneuver (divided into three seg-
ments; can be extended to any number of seg-
ments)

Compact form of the original motion-planning
problem:

min. F(x) s. t.x €S,

where x is the vector of all variables and S is

the set of points x that satisfy the constraints
in the formulation
Augmented Lagrangian function:

-
L(x,y, A7) = Fx)+ATg(x, )+ 5 [lg (%, )

where g(x,y) are coupling constraints
Smaller coordinated subproblems (one sub-
problem corresponds to one maneuver seg-
ment)

minimize Lj(x1,y,\,7)
x1€S51

minimize Lo(X2,y,\,7)
x2€S2

minimize L3(x3,y,\,T)
x3€S3

where x is split into three subvectors
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INITIALIZATION AND SEGMENTATION

™\
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e For rapid convergence, an initialization strat- from a vehicle dynamics perspective [2]
egy is used e Scaling of the vehicle orientation ¢ for ¥ to be
e Solution for a loose tolerance bound and a in the same range as the other dual variables
small number of discretization points e Interpolation techniques to initialize the vari-
e Segmentation of the maneuver (black lines) ables x, y, and A

COMPUTATIONAL APPROACH

Initialize

X, ¥, A, T

e x**1 is obtained by solving

a number of subproblems in I 1
parallel

e y**1 is obtained from min-
imization of the augmented [ [
Lagrangian function, analyt-
ical solution is shown in [1] e

e Update rules for A and 7 are { Yo }
from [3] |

e Proof-of-concept implemen- o
tation in Python 3.7 using
CasADi

< =arg min, Li(xy,y", A5, 75) | | x5 = arg min, Lo(xa,y", A%, 7%) | | x5H = arg min. La(xs, y*, A*, 7%)
x1€81 x2€5 ) e

Converged?

RESULTS
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e All dynamics constraints at the segment (iter 2) take 0.08 s (0.13 s to solve the full prob-

junctions are relaxed, © = {vg, vy, r, ¥, n} lem)
e Segmented—merged maneuver after 30 al- e Less time to declare the solver for maneuver
ternating iterations (iter 30) is almost over- segments in CasADi
laying the full maneuver (ref) e Increasing number of segments to 10 = 0.023 s
e Initialization and two alternating iterations solution time for two alternating iterations

e After just a few alternating iterations, there is e The scaling of certain state variables is im-
a high correspondence between the full and portant for achieving rapid convergence of the
the segmented—merged maneuvers, obtained method
with lower computation times



The Why

* Living in a 3D world,
all we perceive visually
are its 2D projections

« Computer vision is to
obtain the underlying
3D representation

* Geometric invariance
injected into networks
by data-augmentation
has many limitations

* Invariance that cannot
be expressed in the
image plane is
unachievable

* Increased amount of
computations during
learning without
adding new real data

Unsupervised Geometric Deep Learning
Pavlo Melnyk!, Michael Felsberg!, Fredrik Kahl?, Marten Wadenbéck!

IComputer Vision Laboratory, Linkdping University, Sweden
2Computer Vision Group, Chalmers University, Sweden

Gadelha, Matheus & Maji, Subhransu & Wang, Rui. (2016). 3D Shape Induction from 2D Views of Multiple Objects.

Szabod, Attila & Favaro, Paolo. (2018). Unsupervised 3D Shape Learning from Image Collections in the Wild.
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The What

* We want a model that is
capable of recovering the
3D structure of an object
given its 2D view(s)

* Realistic: textured objects
with lighting

The How

* Disentanglement is to be
carried out in an
unsupervised mode

* By injecting geometric
properties into the model
construction

* Using differentiable
rendering



Optimal Range and Beamwidth for Radar
Tracking of Maneuvering Targets Using
Nearly Constant Velocity Filters
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Introduction

The problem of tracking a maneuvering target using a mobile radar
with limited beamwidth is considered.

e Dilemma: How to select the tracking range?

— The risk of losing track of the target decreases with tracking range
— The tracking error increases with tracking range

e Contribution: A method to optimize the tracking range

Performance prediction
The target state is estimated using an EKF, and an a-j-filter is used
to predict the performance.
 «-p-filtering equations: * Measurement equation:
yi = h(xg, si) + ek
er ~ N(0,0.)

Xkll—1 = Xp—1lk—1 + TVp_1j5—1
Vik—1 = Vi_1jk—1
il = Xifk—1 + (Y — Xgjp—1)

N N 3 N
Uil = Vi1 + 7Yk — Xepe—1)

e Performance measure: Maximum mean squared error

o207+ B2 +a) 1 AZT!
“lad—-2a—-p0) B> o

MMSE = o

Depends on:

— filter gains «, 3

— measurement noise o,

— time between measurements T

— maximum acceleration of the target Amax

Parameter selection
Select tracking parameters such that the MMSE is minimized under
the constraint that the probability of losing track of the target is less
than a user-defined value, ~.
Optimization problem:

MMSE
subjectto p(lost track) <

Optimization variables:

e Tracking range r

e Beamwidth fgyw

e Process noise std dev o,

minimize

p(lost track) > ~
150 ( ) > p(lost track) < ~

Case1 Case2 Case3

100 /.’.___.—— \
50 / Case 4 Optimal o,(r)

Optimal pair @

Process noise std dev [m/s’]

0 5 10 15 20
Tracking range [km]

o
&

30

Optimal process noise standard deviation as a function of the
tracking range for tracking a 6g-maneuvering target using a
radar with five degrees beamwidth.
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Targets that can turn sharply have to be tracked at a large range
to be kept within field of view.

Experiments
?:’ - Track the target using a mobile radar
E (j — Beamwidth gy = 5°
2 0 — Acceptable track loss proba-
-2 bility v = 0.3%
0 10 20 30 40 50 60
x [km]

« Evaluate pairs of tracking range and process noise standard devia-
tion as indicated in the Parameter selection section.
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RMSE of the one-step predicted bearing estimates.
Conclusions

Using the proposed method, it is possible to optimize:
« the tracking range (for a given beamwidth)
* the beamwidth (for a given tracking range)

such that the MMSE is minimized, with an acceptable risk of losing
track of the target.

P. Bostrom-Rost, W. D. B. Axehill, Daniel, and G. Hendeby. Optimal range and
beamwidth for radar tracking of maneuvering targets using nearly constant veloc-
ity filters. To appear in Proceedings of IEEE Aerospace Conference, Big Sky, MT,
USA, 2020.
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Automation of efficient, reliable, and elastic
predictive control over the cloud

Per Skarin, Ind. PhD, Ericsson and Lund University
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Motivation & Research Goals

Remote code execution has various uses within control; two of which are oftfloading heavy computations, and moving executions close to
the data. Modern systems use efficient, cost effective, and scalable infrastructure clouds and networks which are becoming increasingly
ubiqutous. This project identifies a research gap for critical systems which are to be seamlessly integrated in an era of fog/edge computing.
The project studies automation of time sensitive systems over the cloud. The goals are to quantify the potentials and limitations, and to
propose control and software strategies incorporating resiliency, reliability and resource management.

Selected Results

A novel distributed cloud platform incorporating IoT and next generation
wireless broadband has been developed. A define once, run anywhere soft-
ware strategy is implemented using a stream programming Platform-as-a-
Service framework. Software components can be relocated at any time while
keeping closed loop control operational.

Clouds and fog computing are drivers in the current and future growth of
large scale system automation. As industries, transports, and smart cities are
increasing their presence in this domain we seek to investigate how real time
operated cyber-physical-systems can make use of these ecosystems!!). We use
feedback control, public and private clouds, next generation wireless technol-
ogy, and available software platforms to provide proof of concept infrastruc-
ture, and application benchmarks!?!, Push the boundaries of real-time control over the cloud. Propose flexible op-
timal control with variable execution characteristics and quality-elasticity in
. . Nz a frequency range of 10-100Hz.

u*(x) = argmin Y I(xiu;) + Vi(Xn) s
i=o Quality-elastic MPC using
st X = f(xiui),  g(xi,ui)<o infinite cloud compute is lim-
Xo=x, xy€T ited by communication and
compute latencies. Graceful
To introduce the concepts of elastic controllers we use Model Predictive Con- degradation and selective ex-
trol (MPC)"®!. MPC provides flexibility in computational demands which ecution at the edge manages

can be traded for performance and formal guarantees. Several parameters f“ uncertainty'*).
can be tuned to allow execution in various contexts: rate of operation, pre- -
diction horizon, model complexity, constraints, and feasibility requirements.
Extensions to robust control, ML, and large scale collaborative optimal con-

trol problems have a natural place in the cloud.

Demonstrated dynamic deployment of time sensitive closed loop
control at 20 Hz over the distributed cloud with massive MIMO wire-
less technology, and IoT components!?/*),

Client X,V

Request API

We propose a formal elastic controller around dual-mode MPC; robust to
response loss, and capable of handling an expanding state space.
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i 2019 IEEE International Conference on Edge Computing (EDGE) . g A 0 L ok
shaping. Invariant sets are imposed for recursive feasibility, stability
5
OO0 Cloud-based model predictive control with variable horizon and rObuStneSS[ ]-
[5] & Per Skarin, Johan Eker, Karl-Erik Arzén
ER Subm. to 21st World Congress of the International Federation of Automatic Control, 2020
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Graphical Models

Characteristic Imset Polytope

Graphical Models are used to encode conditional inde-
pendancy (CI) relations entailed by data-generating dis-
tributions.

For a directed acyclic graph (DAG) G = ([n], E), we
say that a distribution P over X1,... X, is Markov to G if
A1l B|C holds in P whenever A and B are d-separated
given C.

Example 1.Three DAGs and some of the Cl statements
they encode and some they do not.

1 3 2
\/ 1—2—3 /N
2 13
1.11.3|6, 11132, 1113]2,
1A32 1LA3|0 LA3|0

If two DAGs encode the same Cl statements, we call
them Markov equivalent, and say they belong to the same
Markov equivalence class (MEC).

Based on observational data the goal of DAG model dis-
covery is the following:

Goal 1.Given a set of observed Cl relations C, find the MEC
of DAGs that best encode C.

Polytopes

A polytope is the convex hull of a finite set of points in R¢,
say P = conv{py,...,prt C R% A face of a polytope is a
subset maximizing a linear function.

Example 2. Let us consider CIM(I;).

x 152¢354¢5

Definition 1 (Characteristic Imset).Let D = ([n], E) be a
DAG. Then we define the characteristic imset cp: P(|n]) —
R to be

1 |A| > 2 there exists anode a € A
with b — aforall b € A\{a}
0 Otherwise

CD(A) =

Theorem 1.[1] Let D and D’ be two DAGs. Then ¢p = ¢p
if and only if D and D’ are Markov equivalent.

Then we can consider each imset as a vector in R~ 1,
Let the characteristic imset polytope be

CIM(n) == conv {cp: D DAG on n nodes} C R* "%,

Let G be an undirected graph and let AO(G) be the set of
acyclic orientations of G. The characteristic imset poly-
tope over GG is

CIM(G) = conv{cp: D € AO(G)}.

If G has n nodes, then CIM(G) C CIM(n).
CIM(G) is a face of CIM(n).

Score Based Methods

Moreover

Some of the best preforming algorithms for DAG model
discovery first learn the undirected skeleton and then ori-
ent the edges to find the best MEC[2, 3].

This corresponds to first learning a face CIM(G) of CIM(n)
and then identifying an optimal vertex of CIM(G).

Goal 2. For a fixed undirected graph G, describe the com-
binatorial geometry of CIM(G).

Through a deeper understanding of the geometry of
CIM(G) we hope to device new methodology in DAG
model discovery.

References
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Engineering Trustworthy
Self-Adaptive Autonomous Systems

Piergiuseppe Mallozzi
Chalmers University of Technology

Autonomous Systems (AS) are becoming ubiquitous in our society. Some examples are autonomous vehicles, unmanned aerial vehicles (UAV),
autonomous trading systems, self-managing Telecom networks and smart factories. Autonomous Systems are based on a continuous interaction with
the environment in which they are deployed, and more often than not this environment can be dynamic and partially unknown. AS must be able to take
decisions autonomously at run-time also in presence of uncertainty.

It is essential to guarantee that AS act safely in the environment where they are deployed. In other words, the software must work in a reliable manner
and must be safe for humans as life may depend on it. We refer to building trustworthy self-adaptive systems meaning to provide evidence that
important aspects of the AS are correct. We investigate ways to provide assurance to the software system from the requirements to the actual system.
We combine design-time modelling and verification, such as model checking, and runtime assurances techniques such as runtime verification.

Background Research Directions Overview

Goal models have been used over the years as an intuitive and effective means Reward Function System Requirements Requirements Model
to capture the designer's intents and their hierarchical structure, mostly following V| Vertying a ot of tomataig requroments | Feasements | o
an optative approach oriented to the design objectives. Contracts, on the other | Analyzing the 3¢ |t | fomatang o e | 29
hand, enable formal requirement analysis in a modular way, rooted in sound | trustworthiness of function N\ fomatzng
representations of the system semantics and decomposition architecture, and | autonomous systems from ’mml ety System Model v
offering an indicative approach oriented to the system components and their | different angles. srstam = F«:;«Ee',yhiecn;t; 9
interactions, which are less explicit in goal models. — X
Leveraging on REINFORCEMENT d:':_;’::s
Reinforcement learning (RL) algorithms discover policies that can lead AS to | formal methods techniques, [ Exscution Traces
achieve their goals in a dynamic and unknown environment. The developer does | analyze 3 Aunime | NV
not specify anymore how the system should act in each possible situation but | System requirements, l e " g
rather the RL algorithm can achieve an optimal behavior by trial and error. Once | System model,

trained, the AS will be capable of taking decisions and performing actions | and system execution traces.
autonomously while still learning from the environment.

Trustworthiness: AS act safely in the environment where they are deployed. System

Preliminary Results Selected Publications

[1] P. Mallozzi, I. Romero, P. Nuzzo, A. Sangiovanni-Vincentelli, P. Pelliccione “CoGoMo:
Incremental Refinement of Goal Models with Contracts”, in submission, 2020

1. CoGoMo: a requirement engineering framework combining the
goal-oriented and contract-based paradigms. We propose a new
forma' model termed Contract_based goal tree that represents goal [2] P. Mallozzi, E. Castellano, P. Pelliccione, G. Shneider, K. Tei “A Runtime Monitoring

. ' . . . Framework to Enforce Invariants on Reinforcement Learning Agents Exploring
models in terms of. hierarchies of contracts. Based on th.IS model, Complex Environments”, Robotics Software Engineering (RoSE'19)
we propose algorithms that leverage contract operations and
relations to check goal consistency, completeness, and perform [3] P. Mallozzi, P Pelliccione, A. Knauss, C. Berger_, an‘d N. Mohammadiha,
incremental and hierarchical refinement of goals by mappin oals “Autonomous vehicles: state of the art and state of practice” in Automotive Software
L . 9 y ppIng 9 Engineering: State of the Art and Future Trends, 2017.
to promising component architectures. [1]

[4] P. Mallozzi, R. Pardo, V. Duplessis, P. Pelliccione, and G. Schneider, “MoVEMo - A

2. WiseML: an approach that combines machine learning with structured approach for engineering reward functions” in IEEE International
runtime monitoring to detect violations of system invariants in the Conference on Robotic Computing, 2018.
actions execution policies. [2][6] [5] P. Mallozzi, M. Sciancalepore, and P. Pelliccione, “Formal verification of the on-

the-fly vehicle platooning protocol” in International Workshop on Software

3. MoVeMo: a technique to formally express reward functions in a | Engineering for Resilient Systems. Springer, 2016.

structured way; this stimulates a proper reward function dGSign and [6] P. Mallozzi, P. Pelliccione, and C. Menghi, “Wiseml: Keeping intelligence under

as well enables the formal verification of it. [4] control” in International Workshop on Software Engineering for Cognitive Services,
2018
Environment Design-time model
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Figure 1. CoGoMo framework Figure 2.WiseML Figure 3. MoVEMo framework
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Reinforcement Learning in Continuous Spaces with Interactively
Acquired Knowledge-based Models

Quantao Yang, Johannes Andreas Stork, Todor Stoyanov
Autonomous Mobile Manipulation Lab, AASS, Orebro University, SE-70182 Sweden
guantao.yang@oru.se

Manipulation tasks that seem trivial to a human can be hard to learn for robots, especially from scratch
without initial human demonstration, due to high sample complexity. This project aims to address the problem
of robotic manipulation with reinforcement learning algorithms in continuous action space [1]. Specifically,
the interaction between the semantic physical model and reinforcement learning methods will be investigated

in depth.
Background & Motivation Research Goal & Questions
Industrial robots are pre-programmed “How do we apply constraints
to execute specific tasks to manipulation settings? [3]
-In what way can a sequence of
~Human safety [2] constraints encode semantic
~Environments vary from one task to information?
another h ~How do we construct an
~Low efficiency due to fixed trajectory interaction model?
~How do we improve sample
- efficiency?
[4]
Methods & Preliminary Results Reinforcement Learning

~Symbolic/Hierarchical RL

~Actor-Critic RL [6]

~Interaction between
semantic physical model
and RL agent

~Integrate prior knowledge of
the dynamic model of a
robot manipulator

*Transfer learning on new
tasks

[1] Smruti Amarjyoti. Deep reinforcement learning for robotic manipulation-the state of the art. arXiv preprint arXiv:1701.08878, 2017.

[2] Gal Dalal, Krishnamurthy Dvijotham, Matej Vecerik, Todd Hester, CosminPaduraru, and Yuval Tassa. Safe exploration in continuous action spaces. arXiv
preprint arXiv:1801.08757, 2018.

[3] Joshua Achiam, David Held, Aviv Tamar, and Pieter Abbeel. Constrained policy optimization. In Proceedings of the 34th International Conference on
Machine Learning-Volume 70, pages 22-31. JMLR. Org, 2017.

[4] Bjorn Magnusson and Mans Forslund, Safe and efficient reinforcement learning, bachelor thesis, Orebro University.

[5] Adrien Escande, Nicolas Mansard, and Pierre-Brice Wieber. Hierarchical quadratic programming: Fast online humanoid-robot motion generation. The
International Journal of Robotics Research, 33(7):1006—1028, 2014.

[6] Kai Arulkumaran, Marc Peter Deisenroth, Miles Brundage, and Anil An-thony Bharath. A brief survey of deep reinforcement learning. arXivpreprint

arXiv:1708.05866, 2017
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Motivation & Research goals

Rasmus Ros, Lund University
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Modern service based software is developed in short cycles with continuous user feedback in controlled experiments (aka. A/B tests).
My research interests are in building Al tools that support this process and empirical evaluations of their use. The tools use machine
learning, combinatorial optimization, and domain specific languages to specify software configurations that should be optimized with
user data. Evaluation should be performed in realistic environments involving real end user data at industry sites.

Research Output

The project was started with two exploratory studies. Firstly, a
literature study of the published literature [1, 4] which identified
important topics on A/B testing and optimization techniques.
Secondly, the applicability of Al solutions to do A/B testing was
studied with interviews at an e-commerce company [3].

These studies was used as input in designing the toolkit Combo
that does online optimization with user data. Using it involves
specifying a search space of the software configuration and
constraints (logic, arithmetic constraints, etc.). Constraints allow
the developers to filter bad variations and for personalization.
This is exemplified to the right where the variable Width can be
specified as S for mobile devices or M for tablets.

The optimization problem is formalized as combinatorial multi-
armed bandit (CMAB). The problem is solved with probabilistic
machine learning, such as generalized linear models, neural
networks, or random forests, in combination with Thompson
sampling. Evolutionary algorithms and CMAB hybrids were also
explored [2].

The toolkit was built to handle use cases at the company Apptus
that does e-commerce algorithms. Search auto complete
widgets was selected as a first step to optimize on because it is
an isolated component. The implementation was evaluated with
simulations on real data and is yet to be put into production.

Future work include, further evaluation of the toolkit [5] with more
use cases, better handling of changes in the search space, and
further interviews on the applicability of the techniques in [3].

Combo Toolkit

val ac = model ("Auto complete") {

}

val algo = linearNeuralBandit(ac)

nominal ("Width", "s", "M", "L")
optionalNominal("Terms", 1, 3, 5, 10)
val cards = optionalNominal("Cards", 1, 3, 5)
impose { width["S"] equivalent !cards }
model (cards) {

val tc = bool("Two-column")

val hz = bool("Horizontal")

impose { cards[1l] implies 'hz }

impose { width["L"] equivalent (tz or hz) }
}

impose { "Terms" or "Cards" }

References

Ros, R., & Runeson, P. 2018. Continuous Experimentation
and A/B Testing: A Mapping Study. RCoSE.

Ros, R., Bjarnason, E., & Runeson, P. 2017. Automated
Controlled Experimentation on Software by Evolutionary
Bandit Optimization. SSBSE.

Ros, R., & Bjarnason, E. 2018. Continuous Experimentation
Scenarios: A Case Study in e-Commerce. Euromicro SEAA.
F. Auer, R. Ros, L. Kaltenbrunner, P. Runeson, & M. Felderer.
2019. Status and Open Challenges in Continuous
Experimentation. In submission.
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Simplified model specification in the Combo DSL of the use case below.

The Combo [5] toolkit supports specifying a search space of
potentially thousands of variables and constraints in an
embedded DSL and has several online decision algorithms for
optimizing the model with user data.

Decision algorithm

Optimizer model Machine
Policy Learning
A
. action update

context reward

- s

TR

|a1g04choose()|\|algo.choose(ac[”Width”, "S"1) |
|

shi | Qx

SUGGESTIONS
SHIRT

T-SHIRT

SHIFT DRESS

Environment

CATEGORIES

MEN > SHIRTS

LADIES > SHIRTS

MEN > SHIRTS > CA ...

BRANDS
Fashion24

Joe's Shirts

Shirt Corp.
Fashionistas United
Shimis

Renditions of the auto complete model on a web shop for three users.




Reinforcement Learning for robotic manipulation of
deformable objects

Rita Laezza

Developing foundational methods applicable to a wide-ranging class
of objects, for deformation/shape control.

Background & Motivation

* Robotic manipulation of deformable objects has been largely
overlooked when compared with rigid objects.

« Strategies developed for rigid objects cannot be directly
applied to their non-rigid counterparts.

« There is a lack of general approaches that apply to different
deformable object types.

« Sensing of deformable objects is challenging.

* Modeling of deformable objects is also challenging.

Research Goal & Questions

« The initial research focus will be limited to deformable linear
objects (DLOs).

« For DLOs with large strain, it is interesting to study deformation
control, where the goal is to achieve a target plastic
deformation.

« Due to effects of
elastic deformation,
there may be a
springback effect that
determines the final
configuration.

The main research questions to answer at this stage of the
project are:
> |s it possible to learn a deformation trajectory?
» Can these trajectories account for the springback effect?
» Can the grasping points be included into the decision making?

Methods & Preliminary Results

« Initially, reinforcement learning (RL) algorithms will be trained in
simulation environment.

* The robot will not be included in the simulation, instead the
resulting policy will be expressed as a trajectory of one or two
controlled points.

* Model-free and model-based RL methods will be explored.

* Results from simulation will be used as a starting point for
learning with the real robot.

Roadmap & Milestones

There will be several stages with growing complexity, in order to
progress faster into the implementation of RL algorithms.

Stage 1

Stage 2

In simulation
2 grasping points
Perfect information state

In simulation
1 grasping point
Perfect information state

Stage 3 Stage 4

With real robot
2 grasping points
Imperfect information state

In simulation
2 grasping points
Imperfect information state

At each stage, there will be two additional cases studied:
1. Choice of grasping points.
2. Springback prediction after release.




WHY DEFORMABLE OBJECTS?

Many real-world applications involve deformable ob-
jects. For instance:

e Manipulating textiles or food items

e Predicting soft tissue deformation
in medical applications

e Soft robotics

However, the mechanical behavior of deformable ob-
jects is difficult to predict due to their infinite di-
mensional configuration space.

DIFFERENTIABLE PHYSICS

Engineers have developed constitutive models to
describe the deformation of a material under certain
conditions. Solving the corresponding differential
equations requires numerical methods like FEM,
which are computationally demanding and usually
not practical for real-time applications.

Deep neural networks are powerful nonlinear
function approximators. We can employ a neural
network to learn a physics engine for deformable
objects from data. Due to their differentiability, we
can use them in an inverse setting for control and
manipulation.

REFERENCES
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SIMULATION AND MANIPULATION OF
DEFORMABLE OBJECTS USING DEEP LEARNING

Robert Gieselmann
robgie@kth.se

WHAT WE KNOW FROM PHYSICS

There is a vast amount of physical knowledge that
is currently not being used in deep learning models.
Partial differential equations which describe the
mechanical behavior of a material can be derived
from continuum mechanics.

Example: A beam is attached between to
walls and subject to a force applied on the surface.

Given a material model (e.g. Neo-Hookean) we ob-
tain the following mixed boundary value problem
for the elasto-static case.

div-oc=0in Q
u=0onIp

oc-n=71onl'y

Example: In continuum mechanics, the deforma-
tion gradient F' is the derivative of the deformed
state © w.r.t. the undeformed state X.

_ dx __ g
F=fz_14+8

An infinitesimal volume cannot shrink to a point,
i.e. zeros volume. In mathematical terms that
means det(F) > 0.

By incorporating physics knowledge in our neu-
ral network model, we seek to improve sample-
efficiency, generalization and physical plausibility of
the predictions.
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How DO WE INCORPORATE THOSE PHYSICS PRIORS?

One way to make the neural network respect the laws of physics is to add penalty terms to the loss func-
tion which minimize the model violation [1]. Automatic differentiation packages, as used in deep learning
frameworks, allow us to compute the derivatives of the output w.r.t. to the input variables.

v-p

Another approach is to directly incorporate priors into the network architecture. The idea is to impose
hard constraints that assure physical plausibility. This was done in [2] and [3] which drew inspiration from
Lagrangian and Hamiltonian mechanics respectively.

A fully general method based on graph networks was presented in [4]. A structural inductive bias
is introduced by representing objects with nodes and relations with edges. During training several update
functions are learned which encode the body dynamics, interaction dynamics and global properties.

In a preliminary experiment we used graph networks to predict the deformation of a soft beam
which is subject to an external force.

PKPKDKDK

Blue: Ground truth deformation, yellow/purple: predicted deformation, gray: undeformed state

FUTURE WORK:

In future work we will investigate how to incorporate prior knowledge into deep generative models to
enable physically plausible predictions. In particular, we would like to explore the potential of Generative
Adversarial Networks for learning plannable representations for deformable objects (similar to [5]).
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Motion Planning for Self-Driving

Long and Multi-Body Vehicles
Rui Oliveira, KTH

Division of Decision and Control Systems

Motivation and Research Goals

« Long vehicles (buses) and multi-body vehicles (tractor-
trailers) require a significant different way of driving.

» The vast majority of motion planning research for self-
driving vehicles focuses on passenger vehicles.

* We extend motion planning methods from passenger
vehicles to buses and tractor-trailers.

Tractor-trailers Buses

We present a method that takes full advantage of the particular
characteristics of buses, namely the overhangs, an elevated part
of the vehicle chassis, that can sweep over curbs.

We study suitable modelling and driving objectives for
articulated vehicles, such as tractor-trailers within motion
planning approaches. The existence of multiple vehicle
bodies introduces new challenges to the motion planning
task. Current research does not successfully address this
type of vehicles in urban driving scenarios.

Unlike other motion planning approaches, our method exploits
curbs and other sweepable regions, which a bus must often
sweep over in order to manage certain maneuvers.

Intermediate results:

* Designed approximation techniques for the tractor-trailer
road-aligned vehicle model

* Proposed and studied in detail a set of candidate
optimization objectives, while showing that current
approaches are not suitable for tractor-trailer vehicles

» Tested the planner in simulated challenging scenarios

References

[Buses] Rui Oliveira, Pedro F. Lima, Gongalo Collares
Pereira, Jonas Martensson, and Bo Wahlberg. "Path
Planning for Autonomous Bus Driving in Highly Constrained

The approach is formulated as an optimal control problem, and
solved using a Sequential Quadratic Programming approach.

Results:

Environments." In 2019 IEEE Intelligent Transportation
Systems Conference (ITSC)

[Tractor-trailers] Rui Oliveira, Oskar Ljungqvist, Pedro F.
Lima,, and Bo Wahlberg. "Optimization-Based On-Road Path
Planning for Articulated Vehicles." Submitted to 2020 21st
IFAC World Congress

Study of new driving objectives (optimization metrics)
suitable for bus driving

Definition of new region classification schemes and vehicle
body constraints

Tackled the task of bus driving in urban environments by
mimicking bus driver behavior




Learning Contact-rich

Manipulation Skills
Shahbaz A. Khader, KTH, ABB

Description:

B

S
FKTH: W al 4 4

VETENSKAP %

Q%KZCH Koﬂs:ga

TR for a better world™

Power and productivity

Manipulation tasks that involve force interactions between the robotic manipulator and the manipulated object
are perhaps the most difficult class of tasks that can be performed by a robot. Instead of manually solving the
underlying control problem and coding it up in software, we look at how such control policies or skills can be

learned by the robot autonomously.

Background & Motivation

Contact-rich manipulation tasks
such as parts insertion, fitting
etc., can be formulated as
control policies or skills. A
human worker develops such a
skill after receiving formal
instructions and subsequent
practicing. So we ask the
question: can a robot, provided
with a high-level representation
of the task, practice on its own
and learn such a skill?

Research Goal

The goal is to find practical reinforcement learning (RL) methods
for learning to control robotic manipulator performing contact-
rich manipulation tasks.

Interesting aspects:

1. Model-based vs model-free
methods

2. Model learning for contact
tasks

3. Policy search vs online
optimization

4. Role of simulation in RL

5. Safe learning

Probabilistic Model learning and
Prediction

ULearn a system of switching dynamics models (Gaussian
Process Regression - GPR)

UProbabilistic long-term prediction with discontinuous state
evolution

* Khader, S.A., Yin, H., Falco, P. and Kragic, D., 2019. Probabilistic Model Learning and Long-term Prediction for Contact-rich
Manipulation Tasks. arXiv preprint arXiv:1909.04915. Submitted to RA-L/ICRA

mGP: Calandra, R., Peters, J., Rasmussen, C.E. and Deisenroth, M.P., 2016, July. Manifold Gaussian processes for regression.

In 2016 i Joint C on Neural (IJCNN) (pp. 3338-3345). IEEE.

uANN: Chua, K., Calandra, R., McAllister, R. and Levine, S., 2018. Deep reinforcement learning in a handful of trials using probabilistic
i i i ing Systems (pp. 4754-4765).

models. In in Neural

Stability Guaranteed Policy
Learning

QLearn Variable Impedance Control (VIC) policy

QParameter space likelihood ratio

U Stability guaranteed exploration




Configurable observability for 5G orchestration

Simon Lindstahl
KTH Division of Decision and Control Systems, Ericsson Research

Main supervisors: Alexandre Proutiere (KTH), Andreas Johnsson (Ericsson)

\\

Motivation

In modern networks, many different types of services, with different service requirements such as latency or reliability, are run in tandem.
The practice of allocating network resources, physical or virtual, to different services in an effective way is known as orchestration. For
orchestration systems to have full observability, many measurements are needed, but every measurement incurs cost to the network.
This work, started in autumn 2019, is a collaboration between KTH and Ericsson with the purpose of investigating the tradeoff between
performance gain, as provided by measurements, and measurement costs, when applied to 5G orchestration systems.

Measurements in 5G network slicing

Challenges

Ensuring 5G orchestration ML-model
performance in operational environments without
harmful exploration of the state space.

Investigate how models, trained in environments
with full observability, perform in environments
with limited observability.

Study automatic configuration of observability
functions in the network to limit resource usage,
while maintaining model performance.

Study the impact of network slice admission
control and reconfiguration on QoS, QoE and SLA.

Contact
Simon Lindstahl Andreas Johnsson Alexandre Proutiere
Ericsson Research Ericsson Research KTH, Decision and Control Systems

alepro@kth.se

simon.lindstahl@ericsson.com andreas.a.johnsson@ericsson.com




Equivalent G /G /1 Modeling for Server Systems
with Redundant Requests

Tommi Nylander, Johan Ruuskanen, Karl-Erik Arzén, Martina Maggio
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In cloud computing, cloning is used to speed up
processing of requests. The basic idea is that in-
stead of sending requests to only one server, the
requests are cloned and sent to multiple servers si-

Our Contributions:
o We generalize the i.i.d. models of today
to allow for any inter-arrival or service
time distributions. We thus allow for both

multaneously. The response to the request is the

first completed one, and when this happens, the LB

A o—P

other clones are cancelled. Cloning can yield sub-

heterogeneity and dependencies under any
queuing discipline.

stantial improvements to the performance of data
centers, as demonstrated in [1].

Significant performance modeling improvements
were proposed by Joshi et. al. in [2|. In our work,
we extend and further generalize these results.

e Synchronized service assumes clones r¢ to all original requests r°
to be sent to all n servers, and requests to be cancelled immediately.

o We equivalently model the cloned server system as one server, with
inter-arrival and service time distributions Fy,., and Fyin.
e Fin can be determined as

n

Fin(z) = 1= ][ {1 - Fi(2)} (1)

i=1

EXAMPLES

e Heterogeneous exponentials with rates z;:

n

A
-

n n — > pix
Fmin(-r):1_H{1_F"i(x)}:1_Heiﬂ1I:1_e i:]u (2)
ey i=1
1 T — -
0.8 2
206 |
g
0.4 ---F17chp |
...... F2 = chibull
0.4 . _._.-F3 = Funi
,,’ — Enin
05 T, L5 2 25 3 35

Service time (s)

e Heterogeneous distributions: Fiin(z) computed numerically.

> o We analyze server systems under cloning
and compute the optimal cloning factor.

e For more complex systems, we provide a co-
design method for joint synthesis of cloning
strategy and load-balancing policy.

SERVER SYSTEMS

— L FL

min min

- -+

] Edin ] Edin

Fuur e Fae -0
L - L

— —

[ ] Fiin [ ] Fiin

@ - >0 @ -+ 0>

e Servers guaranteeing synchronized service can form clusters.

e Co-design of load-balancing policy ¢ and cloning factor ¢y required.

EVALUATION

e Simulations performed using service time distributions X ¢ from [3]:

X°=27°.5° (3)

with Z° as shared task size and S°¢ server slowdown.

1 I I 10
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e Clone-to-All: Theoretical vs simulated optimal cloning factors.

I I
f— = —— ¢

Iy
i
|

Clone factor cy
[
1 T T
[ |
Clone factor cy
T
I

ama

| | |
JSQ-d o-JSQ-d R
I I I

TSG-d ISGEd R
I I I

(&)
|

E[T] (5
I
|
|

E[T] (s)

= |
JSQ-d IS d R-d R

0.4

| S— —%— I
JSQ-d ¢-JSQ-d R-d

e Co-designs: Theoretical vs simulated optimal cloning factors.

[1] G. Ananthanarayanan, A. Ghodsi, S. Shenker and I. Stoica. "Effective Straggler Mitigation: Attack of the Clones". In: NSDI 2013.
[2] G. Joshi, E. Soljanin and G. Wornell. "Efficient replication of queued tasks for latency reduction in cloud systems". In: Allerton 2015.
[3] K. Gardner, M. Harchol-Balter and Alan Scheller-Wolf. "A Better Model for Job Redundancy: Decoupling Server Slowdown and Job Size". In: MASCOTS 2016.



Situational Learning and Decision Making for AVs
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Jana Tumové and Patric Jensfelt, Division of Robotics, Perception and Learning (RPL), KTH Royal Institute of Technology

Background & Motivation

To drive safely, a driver needs to perceive, predict and comprehend its environment. In [1], this
ability is defined for human decision makers in dynamic systems as Situation Awareness. This
project strives to establish situation awareness for the autonomous system in order to enable risk-
aware and human-like decisions. We define the risk of a state as a combination of the severity of
its consequences and its likelihood of occurrence.

Scania CV and KTH Royal Institute of Technology are currently conducting research in the fields
of agent prediction, path planning, and control, see [2], [3] and [4]. This research aims at bridging
the ongoing projects in agent prediction with motion planning.

Simulation Setup

Prototypes of algorithms will be developed and demonstrated in simulation environments such as
the open-source CARLA or Scania’s proprietary alternative with a full autonomous software stack,
seen in Figure 2.

Figure 2: Predictions of future states in a Scania simulation environment.

Research Goals

The goal of this research project is to further bridge the autonomous vehicles’ sensing and per-
ception capabilities with its decision making. This will be done in the following three steps:

1. Create a situation-aware model of the environment and its future states.
2. Quantify risks and give probabilistic guarantees in the environment.

3. Quantify desires in the environment and demonstrate real-time short-term decision making
in urban driving scenarios.

The items can be summarized into the following research question: How can we form a situation-
aware model of the environment with quantified risks and desires, in order to take safe and efficient
real-time short-term decisions in urban autonomous driving?

References

Scenarios

Consider the scenario represented in Fig-
ure 1. It captures a wide range of the challenges
arising when driving in urban environments,
e.g. blocked road lanes, agents in occluded
areas, and agents possibly bending or breaking
the rules of the road. Autonomous vehicles
will need to negotiate risk and efficiency in
these scenarios to be accepted in public traffic.

Figure 1: High-risk scenario where the ego vehicle
in red needs to perform an overtake with part of the
crosswalk occluded.

Experimental Setup

The platform and possible test track for
demonstrations can be seen in Figure 3.

Figure 3: Scania’s autonomous bus and the city
area at the test track AstaZero Boras, Sweden.
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Shared Situational Awareness

under Complex Traffic Scenarios
Vandana Narri, Scania & KTH
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Motivation & Research goals vavand e commnieaton

+ This project focuses on automating operations of heavy-duty vehicles efficiently and safely under collaborative, yet
dynamically changing situations in highways and urban roads.

* The objective of this project is to model, formalize, and analyse a shared situational awareness framework for the
extended vehicles, i.e., connected vehicles and infrastructure.

» This framework will allow to orchestrate the utilization of shared resources in complex and crowded environments and to
define which kind of information each Connected and Autonomous Vehicle (CAV) and the infrastructure should share.

.
Background Experimental Scenario

+ Local CAV sensors typically provide a limited understanding of * In the proposed scenario, the CAV (yellow) approaches the four-
the environment due to limited sensor range, blind spots, and way crossing and its sensor view (yellow shaded area) is affected
occlusions in the environment. by occlusions (orange shaded areas) by parked cars and

+ Vehicle to vehicle (V2V) communication and vehicle to buildings. A cyclist (orange circle) is approaching behind the
infrastructure (V2X) communication based on 5G or IEEE corner from the right, which cannot be detected with the on-board
802.11p standards, can help gather more information about the sensors. Furthermore, a vehicle (purple) is approaching the
environment, and address the shortcomings of CAV sensors. intersection, but its position is outside the host vehicle’s sensor

* The main research areas are connectivity (enabled by V2X and range.

V2V), cooperative driving, situational awareness and traffic flow *+ The proposed framework should allow the CAV to overcome the
optimization. sensing limitations.

The proposed experimental scenario.

Problem Statement

* How should a CAV comprehend and anticipate the environment

and various road users behavior in it?

- How can a CAV obtain and fuse data from local and external
sensors to improve situational awareness?

- How can the framework adapt to dynamically changing
scenarios?

- How can a CAV take action, based on the varying degree of
decisions?

Methods

~
+ Decentralized, centralized or distributed network.
» Coordination and control of multi-agent systems.
Multi-agents | = Stability, robustness, and performance of multi-agent dynamic systems.
sensing modeling )
MATLAB simulation of a traffic The test facility AstaZero, Boras, Sweden for experiments.
scenario using “Driving
N Scenario Designer” toolbox.
» Fusion of the data from local sensors and external sensors. E
Algortin § » Efficient integration of partial observations. 8
\gorithm for . . i & o
shared situational| © S€NSOr data : using heterogenous/ diverse sensors g
awareness J —
3
~
« The control architecture includes multiple hierarchical layers.
i » High comprehension of the environment should be able to improve the
Interplay with performance of layers.
decision-making
and planning J

E: ple of an open-source simulator for

Scania research prototype vehicle.
autonomous driving scenario - CARLA simulator. P typ

Development Environment

* Matlab/Simulink - Learn & Prototype.

» Open-sourse simulator - Develop for Simulation Demo.

+ Scania autonomous vehicle and the test facility AstaZero,
Boras, Sweden.




Yaw-Moment Control At-the-Limit of Friction
Using Individual Front-Wheel Steering and Four-Wheel Braking

Presented at the 9th IFAC Symposium on Advances in Automotive Control (AAC), Orléans, France, 2019 [1]

V. Fors?, B. Olofsson'?, and L. Nielsen?
1: Linképing University, 2: Lund University

Introduction

¢ Control of autonomous vehicles in safety-critical
situations by combined braking and steering action.

* Closed-loop controller for safety-critical maneuvers
at-the-limit of friction developed in [2].

* Incorporate yaw control by use of the Modified
Hamiltonian Algorithm (MHA) [3].

Combined Tire Forces
At-the-Limit of Friction

* The steady-state longitudinal and lateral tire forces
are both functions of the longitudinal and lateral tire
slips.

* Combinations of different tire slip and many
parameters make a full tire model difficult to use in
real-time applications.

* Assuming the desired tire-forces are at the friction-

Control Layout

Road Information

!

High-Level Control

lo

Chassis-Level Control

la.

Wheel-Level Control

lsu,iv Tu,i

Vehicle

vehicle states |

Compute acceleration reference
for center of mass.

Compute desired rear slip angle
a,, feedback Mg, apply MHA.

Compute desired front slip
angles «;, feedback steering
rate 6',“-, compute desired
braking torques Ty, ;.

0 5 10

15

Slip angle oy (deg)

Friction-limit tire model and friction-ellipse assumption enable
explicit computation of desired slip angles and braking forces.

Modified Hamiltonian Algorithm

Control allocation achieved by minimization of a
Hamiltonian function H.

* Toinclude yaw-moment
control, the Hamiltonian
to minimize is
H = pyF, + pyF, + AM,

e Ais adapted online such that the
yaw moment M, tracks a desired
yaw moment M;l as
A=A+ SM, —MD)

e Cascading the Hamiltonian H to
individual wheels gives

Hi = COS(éi) Fx,i + Sin(éi) Fy,i

ellipse limit, the modeling is simplified. TE
x,t
1
:; 0.8 | ReSUItS
L’é oo Scenario: Minimize deviation from center of lane, driving
S at 110 km/h when the car enters a turn with radius 90 m.
o} s
E 0.4 ."/ 25
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[1] V. Fors, B. Olofsson, and L. Nielsen, “Yaw-moment control at-the-limit of friction
using individual front-wheel steering and four-wheel braking,” in 9th IFAC
Symposium on Advances in Automotive Control (AAC), vol. 52, no. 5, Orléans,
France, 2019, pp. 458-464.
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safety-critical maneuvers at-the-limit of friction,” in 14th International Symposium
on Advanced Vehicle Control (AVEC18), Beijing, China, 2018.
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METHOD DESCRIPTION

We propose a geometric approach to classifica-
tion based on the idea of computing integrals of
a weight function over Voronoi-Cell boundaries.
We utilize a Monte Carlo based approach that
enables us to compute these integrals even for
very high-dimensional image data without the
need to explicitly compute Voronoi Diagrams.
The resulting classification method has the fol-
lowing main characteristics:

— An intuitive, nonparametric, geometrically in-
spired method

— Classification does not require training and
new classes can be added on the fly

— Experiments indicate robustness to imbal-
anced data

— Classification results on par with random for-
rests

— Convergence to 1NN for sequence of increas-
ingly peaked weight functions

Main idea
Voronoi Boundary Classification

result is based on the highest
Voronoi boundary rank r;.
ri(t) = X i, Lj, where

Iy = -fv(t)ﬂv(zj) w(z)dVol.

Here t is the test point, j spans indices of known
data points, c; are the labels, V(-) denotes a cor-
responding cell and w is a weight function.

Classification example in 2D

CLASSIFICATION QUALITIES

Variation of ¢ parameter

—4 f” U 2 4
0.1 =1 o=10
‘We show VBC provably converges to 1NN for small o.

Invariance to data imbalance

0
20
o 0+

—a0 ! i —a0 i

SVM (8p) SVM (12p) VC (8 or 12 points)

Comparison to SVM shows robustness to imbalanced
data.

{vpol, fpokorny}@kth.se

VORONOI RANK COMPUTATION

Spherical integral

) EEES]
I :/ w(f; ) =T gy
F7H VBNV () [(m, n)]|
Monte Carlo integration
Ld—1
I =V, hm 7Zw(f1 )”f](szll) >|‘|
EVALUATION
Accuracy
FROGS MNIST CIFAR-10
VBC(10k)  .9864.0002 .969=.0003 .494+.0011
INN .982 .969 .354
SVM .903 .944 .440
RF(1500) 974+ 0004 .972+.0004 .495+.0016

Our algorithm (VBC) utilizes additional geomet-
ric information about Voronoi Cell structure as
compared to 1NN, has a fundamentally differ-
ent approach compared to Random Forests (RF)
and SVM and is training-free, but performs on
par with RF.

Accuracy convergence

o086 0.970 T B —
0.969 |

0.984 -| 0.968 -|

0.952 -| 0.967 -| 2
0.966 - 4

0.950 -|
0.965 | 0.3

0.978 |

0.964 |

| U UUSUSE T T
0 02 04 06 05 1 0 02

MNIST

T T T
0 02 04 06 08 1

CIFAR-10"

T
04 06 08 1
104

Frogs

Confidence measurement MNIST

The considered confidence
EORINC) g o

ﬁ, where

rM and ) are top two ] o

Voronoi boundary ranks.

value is

0 02 04 06 08 1
ratio

LINKS

Additional information can be found at
people.kth.se/~vpol and people.kth.se/~fpokorny.

Source code available at
github.com/vlpolyansky/

voronoi-boundary-classifier
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VORONOI BOUNDARY CLASSIFICATION:

A HIGH-DIMENSIONAL GEOMETRIC APPROACH
VIA WEIGHTED MONTE CARLO INTEGRATION
Vladislav Polianskii, Florian T. Pokorny

CONVERGENCE OF INTEGRALS

o " N p—
1o ] — 15 "

‘3’2 2:% "’:F!E WE
N(dim =2) N(dim=20) N(d=10% MNIST

We demonstrate rapid convergence of Monte
Carlo integral approximation.

Single cell convergence with 100 trials

s 1

N(dim = 2) MNIST
Plots 1 and 3: avg integral value with error
bounds.

Plots 2 and 4: obtained convergence rate and

O(T~%) fit.

EXTRA TOPICS

Families of decaying weight functions

Our approach is applicable for a class of func-
tions decreasing with distance from the test data
point, that are infinite at 0 and integrable over
possibly infinite cell boundaries. Specifically, we

consider: )
—0.507222

i) = ©

w =

2

Convergence to one-nearest-neighbor
We prove that our classification method con-
verges to one-nearest neighbor classification for
a sequence of increasingly peaked functions:

Theorem. Consider a labeled dataset D =
{(z1,¢1),.. ., (Tn,cn)} of data points z; € R?
and corresponding class labels ¢; € {1,2,...,k}
and a test point t € RY, where t # x; for all
i € {1,...,n}. Assume “that t only has'a sin-
gle nearest neighbor among {x1,...,2,}. Con-
sider a sequence of weight functions {wn}22,,
wy, : Ry — Ry which are each monotom’cal}y
decreasing and where

+oo
lim Mzd_Q dz=0 forall 0< 2z <22
n—o0 /., wn(zl)
Then, for sufficiently large n, the class

VBC(t|D,w,) assigned by the Voronoi Bound-
ary Classifier of t is equal to the class LN N (t| D)
assigned by the nearest neighbor classifier for t.

Asymptotic Complexity

M: # of test points
D: space dimensionality

N: # of known points
T: # of iterations

Base version:
OMND+TMN +TMD +TND)

simple matriz operations, GPU implementation

Approximate version: '
O(prep(N, D) +TM log d‘%;(x)(nn(N, D)+ D))

relies on approximate nearest neighbor implementation
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Reinforcement Learning and Statistical Learning in Control
Yassir Jedra!

Linear Quadratic Regulator

Dynamics Consider alinear dynamical system defined for
t > 0 as follows

Ty = Axy + Buy + wy (1)

with an initial state value o = 0, and where the noise
sequence {w;}:>o is @ martingale difference process w.r.t
a filtration {7, }¢>0 (i.e. E [w|F—1] = 0). Additionally
u; € RP is the control vector, and depends on the se-
quence g, uo, . .., u_1,%—1- & € R is the state vector
and is F,_;-measurable. The matrices (A, B) are unkwon
and belong to some uncertainty set D C R¥*¢ x RIxP,

Cost function Consider a quadratic cost function ¢ :
R? x R? — R, defined by:

c(z,u) = 2" Qx +u' Ru,

where @ = 0 and R > 0. The cumulative cost at each time
step t is defined as

t t
a T T
Cr = E Comy = g g Qs + ug Rusg,
s=0 s=0

where 7 = {m}:>0 is a sequence of F;-measurable
functions, such that for all ¢ > 0, m(l;) =
where I, is the said history and is defined as follows
I, = {xo,up,71,u1,...,2¢}. We denote the cost ¢; ., =
c(z,us). Finally, we call = a control policy. The goal is to
choose a control policy m while not knowing the true pa-
rameters (A, B).

Regret The notion of regret quantifies the cost of not
knowing the true environment. Here we define this no-
tion for a control policy in the LQR problem. We start by
looking at the optimal solution of the problem when (A, B)
are known. When we have an infinite horizon ¢t — oo, the
optimal control law is

'I:L: = K.’Bt,
where K is the gain matrix and is defined as
K=—-(B"PB+R)"'B"PA.

and the matrix P is the solution to the Algebraic Riccati
Equation

P=A"PA-AT"PB(B"PB+R)"'B"PA+Q.

Denote this optimal control policy by 7*. Now, the regret of

a control policy 7 can be defined in the following manner

T T
Ci,me* -
=0

T A )
RT = E Ctymy —

t=0 t

Note the aforementioned regret is stochastic, thus one
needs to precise in what sense regret needs to be anal-
ysed. For a given policy «, there exists two types of anal-
ysis. First, one derives a regret upper bound with high
probability, which consists of finding a rate ¢(.,.), such
that for any ¢ € (0,1), for any T, we have:

P(fz; < CU(T, 5)) >1-4.

for some positive constant C. Second, one derives an ex-
pected regret upper bound, which consists of finding a
rate ¢ (.), such that for 7", we have

E [RF] < CY(T),

for some positive constant C. Finally, one’s objective is to
find a control policy 7 that achieves an optimal rate ¢ (.).

Sample Complexity Lower Bounds of
Linear Time Invariant Systems

Consider the linear dynamical system (1) where the noise
sequence wy, ws, - .. is i.i.d. with a standard gaussian dis-
tribution.

Question: How many samples are required to identify the
true parameters (A4, B) ?

Definition. ((e, d)-locally-stable algorithms) An algorithm is
(e, 0)-locally-stable in (A, B) for some ¢ > 0 and § € (0,1)
if there exists a finite time T such that for all t > T and all A’
and B’ such that ||[A B] — [A" B']||r < 3¢,

]P)A',B/(H[At Bt] — [A/ B/]HF S E) 2 1-— (5

Theorem (see [1]). For any matrices A and B, for all ¢ > 0
and § € (0,1), the sample complexity T4 g of any (¢, 9)-locally-
stable algorithm in (A, B) satisfies:

w(Ean] 3 (26T 1))z Feathy

t=0
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