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ErrFICIENT MERGING OF MAPS
AND DETECTION OF CHANGES

Gabrielle Flood, David Gillsjé, Anders Heyden, Kalle Astrém

UNIVERSITY Centre for Mathematical Sciences, Lund University, Sweden

WALLENBERG Al,
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* We have developed a memory efficient method for merging of maps. The representation can also be used to detect if changes have occurred in the map.
When N map representations are merged, the differences in a = rlr will have the
expected value

=2 2
* The methods are tested on sensor data from both radio sensors and from E[a | =*(N=1)(mp—¢).

cameras.

* It can also be used to detect changes in the map.

Furthermore, it can be seen as a sample from a Gamma distribution,
in T (e (N = D= 0))
I~ , — mp — .
202 P

SfMl s SfMl st SfMl A large deviation from this shows that the map has changed. The histograms below
show @ computed for simulated data together with the assumed Gamma
distribution.

Merge Y

* Cheaper sensors have opened up for the possibility of using crowd sourced data.
* Individual estimates of a map can be obtained using structure form motion.

* A map is typically a set of 3D points, each consisting of a position and a Full bundle Linearized method
feature vector.

* We denote the parameters which are optimized z, and the residuals r.

* The maximum likelihood estimate of z is found by minimizing the sum of

squared residuals, z* = argmin,r"r. The performance of the linearized method presented here was compared to the

performance of one large bundle for merging of maps and to the use of a Kalman

filter.
n 100 1000 4000
When N separate maps from the same scene are obtained they can be merged to a ) Full bundle 0.19 4 3.8 4 54.7 4
single, more accurate map. We present a method which uses linearization to Runtime [s] Linearized 3.2 1074 4.7 1074 33 1074
decrease the computational effort. Kalman 2.1-107 2.2-107 2.1-107
Full bundle  0.11 1.6-10°7 3.0-10°
First, divide z into two parts: q which contains the parameters that exist in all the 1) —q||| Linearized 0.11 1.6-10-2 3.0-1073
SfM sessions and s which are auxiliary parameters. Divide the Jacobian accordingly, Kalman 0.12 22.10-2 58103
s.t. Ja corresponds to q and Jy, to s. Using Az = —(JT])~'J"r, we get o, 2  Fullbundle 012 0.13 0.13
mn  mn Linearized 0.12 0.13 0.13

U WA
UTJ)AZ = |:WT V:| |:A(Sl:| = 7JTr’
The method adjusts to changes faster than the Kalman filter in an experiment using
which then gives UWB data.
& _ g,
dq
Using that ] = Or/0z we find

0!
ae=00 n] [33] = (10 ) Aa=Jaa.

Finally, expressing r as a function of Aq, and using a Taylor expansion give

The method can also be used to detect changes in SfM maps from image data.

e & (to + JgloAq) (ro +JgloAq) = rliro + 2t)3JqloAq + Aq'Tql5]ql0Aq,

and this can be simplified to the compressed representation

flraat AqTRTRAq.

For the merge of two maps we get
1
1= (GO) 4 6O) + (Mg —5)" (M) —b))”

with M = [R(I) R(Z)]T and b = [R(l)q(l) R(Z)q(2)]T. Letting R* come * Our method is efficient and has a small memory footprint.
from a QR-decomposition of M gives a similar representation « It can be used to merge individual maps.

(f(*))’rf(*) = (?‘(*))2 + (Aq(*))T(R(*))’I‘R(*)Aq(*) . * It can also be used to detect changes in a map.




Data-driven Continuous Evolution of Smart Systems

David |. Mattos*, Jan Bosch*, Helena H. Olsson**

*Chalmers University of Technology, **Malmé University

Description:

The overall objective of this project is to analyze how to automate different types of experiments and how companies can support and
optimize their systems through automated experiments. We explore this topic from the perspectives of the software architecture, the
algorithms for the experiment execution and the experimentation process, and we focus on two main application domains: the online and

the embedded systems domain.

Our optimization through automated experiments approach can be used in different configurations such as in offline and simulation,

testing bed, hardware-in-the-loop, and deployed and live systems.

Background & Motivation

Online controlled experiments are one of the key techniques used

to validate, optimize and incrementally deliver value in software

systems. Automated experiments can help R&D organizations to

lower the cost of each experiment iteration, run more experiments

and run new experiments in scenarios that were previously not

possible. In this context, we ask try to answer the questions:

* How do we optimize deployed complex systems to deliver more
value to the customers and users?

* How to establish a trustworthy experimentation process?

* How do we architect an automated experimentation system?

* How can new machine learning algorithms help automated
experiments?

* How can we run experiments in embedded systems and in
systems that have high reliability requirements?

Sony Mobile Case Study

An integrated data-driven development of solution for running

online controlled experiments and automated experiments for

web, mobile, backend systems and distributed hardware.

= A/B experiments for mobile user interface

« Automated experiments for live optimization of
hyperparameter of algorithms

* Mixed optimization of continuous and discrete parameters
A B

Ericsson Case Study

Automated optimization of software parameters in a LTE radio

base station.

* How do we optimize a live radio base station to operators’
business goals?

* How do we minimize the regret associated with the exploration
of the parameter space?

* How do we add an optimization system to an existing radio
base station without changing its software?

Microsoft Case Study

A trustworthy experimentation process for online controlled

experiments.

« What are the activities of a trustworthy online controlled
experimentation process?

* How do metrics evolve and influence the experiment and
product evolution?

Project Publications

1. D. . Mattos, J. Bosch, and H. H. Olsson, “Your System Gets Better Every Day You Use It: Towards
Automated Continuous Experimentation,” in the 43rd Euromicro Conference on Software 5.
Engineering and Advanced Applications (SEAA), 2017

2. D.I. Mattos, J. Bosch, and H. Holmstrém Olsson, “More for Less: Automated Experimentation in
Software-Intensive Systems,” in The 18th International Conference on Product-Focused Software 6.
Process Improvement, 2017

3. D. . Mattos, J. Bosch, and H. H. Olsson, “Challenges and Strategies for Undertaking Continuous 7.
Experimentation to Embedded Systems: Industry and Research Perspectives,” in Lecture Notes in
Business Information Processing, vol. 314, 2018, pp. 277-292. 8.

4. D.I. Mattos, E. Martensson, J. Bosch, and H. H. Olsson, “Optimization Experiments in the
Continuous Space: The Limited Growth Optimistic Optimization Algorithm”, in the Proceedings of

the 10th International Symposium on Search-Based Software Engineering, 2018, pp. 1-15.

D. I. Mattos, P. Dmitriev, A. Fabijan, J. Bosch, and H. H. Olsson, “An Activity and Metric Model for
Online Controlled Experiments” in the Proceedings of the 19th International Conference on
Product-Focused Software Process Improvement, 2018, pp. 1-16

D. I. Mattos, J. Bosch, and H. H. Olsson, “Multi-armed bandits in the Wild: Common Pitfalls in
Online Experiments” in submission to an international software engineering journal, 2018, pp.1-22.
D. I. Mattos, J. Bosch, H. H. Olsson, A. Dakkak, and K. Bergh, “Automated Optimization of
Software Parameters in a Long Term Evolution Radio Base Station,” in submission, 2018, pp. 1-8.
D. |. Mattos, E. Martensson, J. Bosch, and H. H. Olsson, “Optimization Experiments at Sony,” to be
submitted to an international software engineering journal, 2019




Representation Learning and Visual Localization

Emil Brissman'-2, supervisors Michael Felsberg? and Per-Erik Forssén?
'Saab Dynamics, 2Computer Vision Laboratory (CVL) Linképing University

Background & Motivation

Vehicle, autonomous or
semi-autonomous.

Need vision during
operation.

Onboard resources,
limited computational

power.
Multiple Object Segmentation

Try to avoid data
overload.

Mimic human visual
attention.

Choosing salient areas
from the total visual
scene.

Contour. Image from DAVIS [2].

Research Goal & Questions

Develop visual methods

(CNN) for vehicle Detection
localization with single

image input.

What kind of image Tracking

knowledge can be used?

In order to estimate eg. risk
of collision with other

objects or ego-pose.

For the segmentation task handle multiple objects in a
single forward pass.

Uncertainty Estimation

Work from other
perspective.

Learn a motion model
from data.

Synthetic data.

Network uncertainty
estimation.

Estimating the predictive
distribution of projectile
paths.

Predictive distribution
estimated with MC-
Dropout [3].

Methods & Preliminary Results

» So far focused on single object
tracking in the image-plane.

* Video Object Segmentation is the

task of tracking and segmenting mogex, g
one or multiple objects.
o Input: image sequence and

segmentation mask in frame
#1, t=1
o Output: segmentation masks -

for frames t > 1
Paix,0)

o Assumptions: ground truth l
segmentation given in first
frame (semi-supervised)

o Challenge: build an object model from  amaxteix.o
the first frame, appearance changes,
distractor objects (semantically similar).
Generative Appearance Model: Learning

Reference frame
E

Reference frame label

‘

1 7/

Generative Appearance Model: Classification
Testframe

CNN A

_->_—>

pli

* Co-author on AGAME [1], presented at CVPR2019

o The idea is to probabilistically model the feature
distribution of the object and the background.

o Feature vectors are explicitly classified via the
probabilistic object model which is updated after
each frame.

References

[1] J. Johnander, M. Danelljan, E. Brissman, F. S. Khan, and

M. Felsberg. A generative appearance model for end-to-end

video object segmentation. In The IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), June 2019.

[2] J. Pont-Tuset, F. Perazzi, S. Caelles, P. Arbelaez, A. Sorkine-Hornung, and L.
Van Gool. The 2017 davis challenge on video

object segmentation, 2017.

[3] . Gal and Z. Ghahramani. Dropout as a bayesian

approximation: Representing model uncertainty in deep learning. ICML, 2016.



Exploration and uncertainty in generative
networks for reinforcement learning

Emilio Jorge

Chalmers University of Technology

Why do we want know our uncertainty?

Safety

By avoiding what we do not know sufficiently about
we can avoid behaviour that can lead to unsafe out-
comes.

Exploration

In situations where safety is not an issue we can ex-
plore uncertain regions to search for potential reward-
ing outcomes that are still undiscovered.

Q

What are good ways of representing
uncertainty?

What do we want?

Generality. It is important for the models to be dis-
tributionally agnostic as transitions and rewards will
very rarely belong to any friendly distributions with
simple closed form.

Convergence. As more data is obtained it is important
that the estimates converge to something that is close
to the true model.

Efficiency. It needs to learn fast in terms of samples. It
also needs to be able to scale reasonably with regards
to computational complexity. Itis especially useful if it
has efficient ways of updating incrementally with data,
as that is natural in reinforcement learning settings.

What might not be necessary?

We might not always need explicit likelihoods (but it
is nice to have), sampling is often enough. It might
also be possible to relax some of the requirements
mentioned above based on the desired application.

Generative models

Generative models allow us to approximately repre-
sent (and generate from) distribution p(x) using sam-
pled data. Popular methods are Generative Adver-
sarial Networks (GAN) and Variational AutoEncoders
(VAE).

How do they work?

They transform a sample from a latent variable z into
a sample of the more complex distribution p(x) that
aims to approximate the true distribution p(z).

Generative Generated distribution

Latent variable z model G(z) B(x)

— > > —>

N

True data distribution
p(x) Sampled data X -

Research goals

We want to use generative models to reflect under-
lying uncertainty. By using this we aim to be able
to create algorithms for reinforcement learning that
can explore safer and/or in a more efficient way.

Any ideas or questions?
Come talk to me directly or email me
at emilio.jorge@chalmers.se

CHALMERS

UNIVERSITY OF TECHNOLOGY

D WALLENBERG Al,
AUTONOMOUS SYSTEMS
AND SOFTWARE PROGRAM




Condition Monitoring
for Autonomous Mining

Erik Jakobsson
Erik Frisk, Robert Pettersson, Mattias Krysander

erik.jakobsson@epiroc.com

LINKOPING UNIVERSITY

<4

Condition monitoring is the process of using measurement data from an asset to identify changes, which might indicate developing faults. Oil sampling,
vibration analysis and thermography are common examples of techniques used. Prognostics extends condition monitoring to also take into account the
change of condition over time, given a certain usage of the asset. The goal of prognostics is typically to determine the remaining useful life of the asset.

BACKGROUND & MOTIVATION

Mining often takes place in remote areas, and
involves tasks both tedious and dangerous. Tt
is also a predictive environment, with complete
access control for personnel and vehicles. This
makes it an ideal environment for using au-

)
|

CONTRIBUTIONS

Mine Truck Fatigue Estimation On-board
sensors and data driven models are used to esti-
mate the condition of the frame of a mine truck,
as seen in the following process:

Using the model, differences in operating patterns
can be seen. The figure below shows how one way
of operating the vehicle causes almost 5 times as
much damage.
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ROADMAP & MILESTONES

tonomous machines.

But how should one decide how to use the au-
tonomous machines? Should one maximize the
driving speed to maximize output? Should one
drive safe to avoid breakdowns and failures?

We claim that internal system awareness is key
for a successful autonomous system. The vehi-
cle needs to be able to monitor its internal state,
predict its future state, and communicate this in-
formation to the planning system of the mine.
Mining vehicles are characterized by relatively
low volumes and high customization, which to-
gether with the difficulties of measuring and log-
ging on mobile machines limits the usability of
standard techniques.

Driving mode categorization The most re-
cent work includes categorization of driving
modes for a vehicle, where nothing but an ac-
celerometer is available. The current approach
is to use temporal convolution neural networks.
The structure is inspired from research on Hu-
man Activity Recognition (HAR).

00x3

-
o
o

100x3
0x3
n 25x3
n 15x3

As seen below, the network is able to correctly
classify tasks with roughly 95% accuracy.
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- One conference paper accepted [1], two journal papers [2],[4] submitted and one conference

paper submitted [3].

- Licentitate thesis presentation, December 2019.

- Ongoing and Future: Condition monitoring of hydraulic rock drills.

RESEARCH GOAL & QUESTION

A number of research questions define the area:

1. How can a rock drill be modelled and mon-
itored in order to predict future failure? What
data should be collected to maximize the infor-
mation gathered without creating a too complex
product?

2. Can a low number of non-dedicated sensors
be used to monitor multiple components, for ex-
ample points in a mine truck frame?

.
% S5 L

> "het B

3. How should the collected measured data be
used, together with models, in order to facili-
tate individual-based predictive maintenance for
mining products?

An important aspect of the research is to un-
derstand how predictive maintenance methods
can be applied for products with a relatively low
volume, high customization, and in a very harsh
environment.

(
|

PUBLICATIONS

[1] Jakobsson et al. "Data driven modeling and
estimation of accumulated damage in min-
ing vehicles using on-board sensors" pub-
lished in Proceedings of Annual Conference
of the Prognostics and Health Management
Society, St. Petersburg, Florida, USA, 2017.

Jakobsson et al. "Fatigue Damage Moni-
toring and Prognostics for Mining Vehicles
using Data Driven Models" submitted to
the International Journal of Prognostics and
Health Management (IJPHM), 2019.

[3] Jakobsson et al. "Automated Usage Char-
acterization of Mining Vehicles For Life

Time Prediction" submitted to IFAC World
Congress, Berlin, 2020.

Astrand et al. "A System for Underground
Road Condition Monitoring" submitted to
International Journal of Mining Science and
Technology, 2019.
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Real-World Reinforcement Learning
for mobile networks optimization

Filippo Vannella, Alexandre Proutiere, Jaeseong Jeong
vannella@kth.se, alepro@kth.se, jaeseong.jeong@ericsson.com

e Real-world Reinforcement Learning (RL): In the context of RL an agent is required to interact with an unknown environment to collect samples
of experience and learn from a feedback signal. Even though RL has proven its worth in a series of artificial domains, much of the research advances
in RL are often hard to leverage in real-world systems due to many challenges:

e Legacy Telecom automation: Traditionally, automation in mobile networks relies on rule-based methods governed by heuristic domain knowledge.
These technologies are however limited to the range of the given tasks and rather hard to be generalized to more complex environment where the
observations are in a high dimensional space and include random noise in real world.

e Research goal: actualize RL agents to successfully automate key use cases real-world mobile networks addressing challenges of Real-World RL.

METHOD: OFFLINE OFF-POLICY LEARNING & SAFE EXPLORATION

RESEARCH GOAL & QUESTIONS

e How to address the ubiquitous reality gap in
RL algorithm for the actual deployment of
policies in real-life use cases? How this relates
to RL algorithms specialized to the automa-
tion in cellular networks?

e What are the optimal techniques to pre-train
1. RL uncontrolled exploration inevitably degrades system performance VS rule-based policy hav- a policy offline from observation collected to

ing constant sub-optimal performance level. another policy (offline off-policy learning) and
how to iteratively reduce the risk of the pre-
trained policy?

2. Pre-training (offline) from D, to initialize policy = having performance at least as good as .

3. Safe exploration (online) allow to learn a policy 7 satisfyign a policy safety constraint. e How to design safety constraint allowing on-

line deployment of the pre-trained policy and

USE CASE: REMOTE ELECTRICAL TILT (RET) OPTIMIZATION safe exploration of the remaining state space?

e Challenges: MILESTONES

1. Sampling bias: actions favored by mg will
be over-represented in D, .

2. Incompleteness: feedback 6(x;,y) for y #
y; not chosen by 7y are not available.

¢ Remote Electrical Tilt (RET): automation e Solution: Inverse Propensity Score (IPS) risk.
of antenna tilt angle in 4G LTE networks for
Coverage and Capacity Optimization (CCO).

() = B [6(0,)] = B, [a0.5) T

e Contextual bandit setting;: 7o(ylx)

IPS corrects for distribution mismatch between

ii.d.
1. Observe conteat x; “~" Pr(X). 2; = [¢;, ¢ baseline policy mg and target policy .

aggregated feature of coverage ¢; and quality

¢; Key Performance Indicators (KPIs). e Training objective: Monte-Carlo IPS risk es-

2. Choose action y; € ¥ = {-1,0,1}: down- timator training objective on Artificial Neural
tilt, no change, uptilt antenna. Network (ANN) model m,(y|z) : X — Pr())
3. Experience loss 6; = 0(v,y) = N
s o et v eceatied e = argmin 3325, : ,‘
: v NI o (il CONCLUSIONS & FUTURE WORK

e Baseline Dataset: Dy, = {(z;, s, )}, de-
rived from rule-based expert baseline policy .

e Promising generalization performance of
offline off-policy Learning.

e Objective: Derive new policy 7 € II from D,
minimizing the expected risk:

R (ﬂ-) = ]EINPr(X)]EyNW(~\I) [5 (I, y)]

R(mp) ~ —0.17 R(my) ~ —0.2
c0] | 1] | 2] | 0] | 1] [2] ° : .
o8 T 005 T 0.00 005 o5 02 Stu.dy and design safety constraints for RL
G |0 0.06 | -0.02 | 0.04 | 0.03 | -0.07 online deployment.

q[2] [ -0.12 [ -0.09 | -0.03 | -0.25 | -0.09 | -0.22

<
S

e Extend IPS training to Markov Decision
Process scenario.
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Homotopical decompositions of Vietoris-Rips complexes

Wojciech Chacholski, Alvin Jin, Martina Scolamiero, Francesca Tombari

o Department of Mathematics, KTH Royal Institute of Technology, Stockholm, Sweden

(@ Introduction

The use of algebraic topology is rapidly growing in understanding data. The
general pipeline of TDA can be summarized by the following:

(3 Main result

We define the obstruction complex:
F(o,A)={ucA|pUo eK}.

| Dataset - Points with relations between them |
4

‘ Geometrical structure - Simplicial complex |

4

‘ Algebraic invariants - Homology I

4

‘ Features for statistics and machine learning I

Figure 1: An example of a Vietoris-Rips complex, given some r > 0.

The computational challenges motivates the following type of question:
given a decomposition of our data set Z = X U Y, what information can we
recover about the Vietoris-Rips complex of Z from the component Vietoris-
Rips complexes?

2 A general approach

Let K be a simplicial complex, K, = X UY the set of its vertices and A =
XNY. Let Ky = KNX and Ky = KNY. One can easily notice that the
union of Ky and Ky does not give the initial simplicial complex K. Anatural
question that might arise is whether the following inclusion is a homotopy
equivalence or not

KyUKy —K.

Figure 2: Example of a simplicial complex with high complexity. (Image courtesy of the authors
of arXiv:1608.03520)

A special case of this problem occurs when a pseudo-metric space (Z, d) is
considered. Fixing r > 0 and a covering of Z consisting in two subspaces
X and Y, we get the inclusion

VR/(X)UVR,(Y)= VR,(Z).

Figure 3: The two figures show a simplicial complex K (on the right) and Kx U Ky (on the left),
where X ={x,a}and Y ={y,a}.

Theorem. Let 6 be a closed collection of simplicial sets. If, for every o
in{oeK|onX #@and oNY #0 and o NA =0}, the simplicial complex
F(o,A)satisfies ¢, then the homotopy fibers of KxUKy C K also satisfy
G.

[Corollary. If, for every o as above, the simplicial complex F (o, A) is con-]

tractible, then Kx U Ky C K is a weak equivalence.

We get a long exact sequence in the case when adding one vertex:
Hy(F(x, A)) = Hy(Ky) = Hy(K) = Hy—y(F(x, A)) = Hy1(Ky)

and another when adding two vertices:

H,(XF(x,y, A)— Hy(KxUKy) = Hy(K) — H,1(XF (x, y, A) > Hy—1(KxUKy).

These sequences give information about the global homology of K with
respect to local information.

(4 Examples

Consider the metric space Z = {x3, X, a1, a,, y }, with the metric such that
every two points of Z has distance 1 except for x;, a, and x,, a, having dis-
tance 1.1. Let X = {x, x5, a;,a,}, Y = {y,a;,a,} be a cover for Z. We can
easily see that V R;(X)UV R,(Y) has the homotopy type of S!, while V R,(Z)
is contractible. This is due to the fact that F(o, A) is empty, hence non-
contractible, when o is the 2-simplex with vertices x;, x, and y.

X2 a X2 a

X1 X

Figure 4: Kx U Ky on the left and K on the right. Notice that all the triangles in this example are
filled, because K is a clique complex.

The following picture shows an example of a decomposition of Z =
{x1, X2, 1, Yo, Q11, G132, A1, G55} that has the same homology as the total sim-
plicial complex up to degree 2, but different H.

Figure 5: The figure represents a 2-dimensional visualization of the Vietoris-Rips complex
VR (X)UVR,(Y). VR(XUY)is obtained by the above simplicial complex adding the simplex
{x1, %2, y1, 2}

The metric is given by:

d(ay, az)=d(an, aro) = d(az, az) = d(as, ax)=4,
d(ayy, az)=d(a,, az)=6,

d(xy,ay1)=d(y, ax1) = d(xp, az)=d(y» a12) =3,
d(xy, ay5)=d(y, ay) = d(xp, az) = d(y» a) =5,
d(xy, az1) = d(y1, azs) = d(xz, a12) = d(yp, a11) =7,
d(xy, az) = d(y, a12) = d(xp, a11) = d(y», a1) =9,
d(xy, %) =d(y,5)=

=

d(x;, y)=d(x;, o) = d(x, 1) = d(x2, 35) = 8.
As we have already noticed, the study of this problem for Vietoris-Rips
complexes is actually a consequence of the same problem stated for
generic simplicial complexes. Analogously, the conditions that we put on
a metric space are just a translation of hypothesis on simplicial complexes.

(5) References

[1] W. Chacholski, A. Jin, M. Scolamiero, and E Tombari. Homotopical decompositions of Vietoris—Rips
complexes. Forthcoming, 2019.

[2] Adamaszek et. al. On Homotopy Types of Vietoris—Rips Complexes of Metric Gluings. Proceedings of
the 34th Symposium on Computational Geometry (2018), 3:1-3:15.




George Osipov

Background

Constraint satisfaction problems (CSPs) appear in numerous
domains of computer science: artificial intelligence, machine
learning, computer vision, computational biology, etc. An
instance of a CSP consists of a set of variables, a set of values
that can be assigned to these variables (known as the domain)
and a set of constraints - logical predicates over variables that
impose restrictions on the possible assignments of values. To
solve such a problem, every variable needs to be assigned a
value so that all the constraints are satisfied.

The framework of constraint satisfaction allows to express
many different problems. Despite its generality, CSP exhibits
structural properties that can be exploited to determine its
complexity. For CSPs over finite domain the recently

proven dichotomy conjecture [1,2] states that all problems are
either in P or NP-complete. Moreover, complexity of any
finite-domain CSP can be checked by investigating the set of
its solutions and the symmetries of this set. This line of
research is usually referred to as algebraic approach to CSPs.

The dichotomy conjecture no longer holds for CSPs over
infinite domain [3] and algebraic methods do not apply
directly. Furthermore, problems no longer admit a brute-force
algorithm that enumerates all solutions, so there is no
exponential upper bound in the number of variables in general
case. Only superexponential algorithms are known for some
CSPs. Improvement is unlikely is some cases based on
assumptions in computational complexity such as Exponential
Time Hypothesis [4]. But in other cases, there is a large gap
between the best known upper and lower bounds. Many
problems that arise in the context of artificial intelligence
when spatial and temporal reasoning is involved fall into this
uncharted area. We are interested in developing mathematical
tools to investigate them.

LINKOPING
II." UNIVERSITY

Spatial Reasoning

Region Connection Calculus (RCC) [5] is designed for
qualitative spatial reasoning. Here we will concentrate on its
simplest version - RCC-5. There are 5 basic relations in RCC-5:

28 e00e

disjoint  overlap  part of part of equal
XDRY XPOY XPPY XPPiY XEQY

A general constraint satisfaction problem for RCC-5 consists of
a set of variables representing regions and constraints which
are disjunctions of basic relations. To formalize this problem
independently of the geometry of regions, one can think of
variables ranging over subsets of natural numbers and
relations being the corresponding set operations. Consider an
example:

X {PP,PPi} Y
Y {PP,PPi}Z
X {DR}Z
A possible solution hereis X = {1}, ¥ = {1,2}, Z = {2}.

Best known lower bound: 0*(c™)
Best known upper bound: 0*(n!)

Here n is the number of variables, ¢ is some constant value.
Notation 0* hides polynomial factors in n.

Temporal Reasoning

Temporal Networks proposed by Dechter et al. [6] are used to
express temporal constraints. Time points are represented by
vertices of a graph. Directed edges X — Y are labeled with
intervals [a, b] and impose the constrainta <Y — X < b.
Here is an example of a temporal network:

[30,40]

[10,20]

[60,70] 120,30]

Consistency of a temporal network can be checked in
polynomial time in the size of the graph. However, a more
general version of the problem which allows for disjunctive
constraints admits a superexponential lower bound.

Best known lower bound: 20 log™)
Best known upper bound: 20(**)

References

[1] Bulatov (2017) A dichotomy theorem for nonuniform CSPs.
[2] Zhuk (2017) A proof of CSP dichotomy conjecture.
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networks.
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Introduction Research Problem
» Deep Learning methods can learn very intricate functions by » Designing a model on sequential data with Pyro which enables
discovering multiple layers of representation. probabilistic modeling to represent uncertainty.

» Many deep learning frameworks have been important in health care and Probabilistic Model
provided many valuable insights, but most do not take advantage of
probability theory to represent uncertainty.

» Detecting ECG abnormalities [1] | !

» For its use in a clinical setting, there is a need for propagation of
uncertainty through the pipeline of classification for risk assessment.

O Interval

QT Interval |

Pyro Example

» Hidden markov model to represent full ECG segmentation.

Probabilistic Programming Languages

» Uncertainty comes in many forms.

» Supervised HMM model in Pyro:

def model(self, mini_batch, mini_batch_reversed, mini_batch_mask,
mini_batch_seq_lengths, a_f=1.0):

T_max = mini_batch.size (1) #the number of time steps

pyro.module ("dmm", self)

# set x_prev = x_0 recursive conditioning in p(x_t | x_{t-1})

x_prev = self.x_0.expand(mini_batch.size(0), self.x_0.size(0))

# plate: each datapoint is conditionally independent of others
GPS measurement ECG Signals [2] with pyro.plate("x_minibatch", len(mini_batch)):

for t in range(1, T_max + 1): # sample x and observed y’s
transition_prob = self.trans(x_prev) # p(x_t | x_{t-1})
with poutine.scale(None,a_f):

» To handle varying forms of uncertainty, a fundamental approach is to
x_t = pyro.sample("x_%d" % t,

use a probabilistic approach based on the probability theory which is a dist.Categorical (transition_prob)
mathematical Ianguage to model uncertainty. .mask(mini_batch_mask[:, t - 1:t]).to_event (1))
y_loc, y_scale = self.emitter(x_t)

# normal distribution p(y_tlx_t)
pyro.sample ("obs_y_%d" % t,dist.Normal(y_loc, y_scale)
.mask (mini_batch_mask[:, t - 1:t])
.to_event (1) ,obs=mini_batch[:, t - 1, :])
X_prev = x_t
» The probabilistic programming languages aim to develop probabilistic
systems which separate model and inference.
Project
» The focus on this project will be on using a probabilistic programming
language, e.g. Pyro [3], together with developing new neural networks

» This project is part of a collaboration work, Deep Probabilistic
on sequential data.

Neural Networks for Survival Analysis, between Gizem Caylak and
Assoc. Prof. David Broman at KTH Royal Institute of Technology and
Prof. Thomas Schén and Asst. Prof. Niklas Wahlstrom and Daniel

Gedon at Uppsala University.
> This work was partia”y Supported by the Wa”enberg AI’ Autonomous

Systems and Software Program (WASP) funded by the Knut and Alice
» PPLs increase expressiveness via separating model and inference. Wallenberg Foundation.
Benefit: The user can see the model clearly and avoid complex

inference code.
References

» PPLs construct confidence intervals on estimates.

. Ao g Rl T . 8 A H. Ribeiro, M. H. Ribeiro, G. M. M. Paixio, D. M. de Oliveira, P. R. Gomes, J. A. Canazart, M. P. S. Ferreira, C. R.
Beneflt. In C.I'n'.cal SIS wh'ere risk-assessment is c”t'.cal’ !t & Andersson, P. W. Macfarlane, W. M. Jr., T. B. Schén, and A. L. P. Ribeiro, "Automatic diagnosis of the short-duration 12-lead
important to indicate how confident we are about our estimation. ECG using a deep neural network: the CODE study,” CoRR, vol. abs/1004.01949, 2019.

8 P. Plawiak, “Ecg signals (1000 fragments)." http://dx.doi.org/10.17632/7dybx7wyfn.3, 2017.

8 E. Bingham, J. P. Chen, M. Jankowiak, F. Obermeyer, N. Pradhan, T. Karaletsos, R. Singh, P. Szerlip, P. Horsfall, and N. D.
Goodman, “Pyro: Deep Universal Probabilistic Programming,” Journal of Machine Learning Research, 2018.
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Optimal Order Execution

A common task within financial trading, is trying to buy or sell a large
amount of assets at the best price available. However, it is typically not
possible to fill the whole amount with just one big order, instead the large
order is split into smaller suborders executed at different times.
How to split the large order into smaller ones is an optimal control problem
where we have to take the following into consideration:
e Cost: Not enough available volume at best price
e Market Impact: Our orders will typically push the price in the wrong
direction
e Risk: Independently of our own orders, something unrelated might
happen that moves the price

Can we use machine learning to improve our order execution?

Reinforcement Learning for Order Execution

" Agent
State Reward Action
St+1 Te1 a;
Environment |«
Problem:

Need to train the agent offline, but do not have access to realistic data
which models market impact

Solution: Use generative models that learn from real data

Limit Order Book

mid price

Available Volume

bid price

!

Price

ask price

spread

e Limit Order Book (LOB) keeps track of all outstanding orders

e Can view LOB as high-dimensional time series, but usually very
sparse

e Typically model the LOB with stochastic processes, but challenging
identifying more complex dynamics

e Machine learning methods suitable for finding flexible and complex
representations

Generative Models for Order Books

First model based on Recurrent Neural Networks

Models each change in the order book as an event

Each event is specified by an event type, the price level of the change
and the volume of the change

The model is trained by maximizing the likelihood of training data

Modelling of Order Book Events

®P(e|h;, OB,)
e e, - event type: Market Order/Limit Order/Cancellation
e h, - memory of RNN
e OB, - current state of order book
@P(l;|h;, OBy, €;)
e [, - price level of the change
®P(v;|hy, OBy, e, 1)
e v, - volume of the change
X Joint probability:
Pley, Iy, vi|hy, OB;) =P(e;|hy, OB)P(I;| s, OBy, €;)P(v;|hy, OBy, e, 1)

Evaluation of Model

Figure 1: Mean and standard deviation for midprice and volume weighted average midprice

Figure 2: Histogram of Order Imbalance
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Dynamics enhances the
capacity of networks

Some directions for research to understand the functioning of the brain.

1. Particle flow dynamics on graphs:

multiple phase-transitions

Dynamics: Consider particles flowing on the graph below. From O, each particle goes

in the direction in which the next particle is the furthest distance away.

Parameters: The speeds, a;, that the particles have on each outgoing edge.

Initial conditions: The distances from O to the nearest particle

in each outgoing edge at time t = 0.

Output: The sequence of chosen edges, which will be a cycle.

Partition...

*  The parameter space by the different behaviours (left)

*  Given a;s, the space of initial conditions by the resulting cycle (right)

" These are both highly non-trivial partitions!
The parameter space, partitioned by the cycle(s)

that the system can end up in given any initial

condition.
Conclusion: Many different behaviours occur,
infinitely many as the speed ratios approach Flow networks are well studied in the
zero. The dynamics imposed on the structure continuous case, but the discrete case
gave it a capacity to encode information. In the carries additional interesting
future we will study cycles and combinations of complexities of a combinatorial nature
several similar graphs where we expect this and deserves further study.

capacity to increase significantly.

A hyperplane of the space of initial conditions for
parameters that admit three cycles. It is
partitioned by which cycle (4, B or C) the system
will end up in given that initial condition.

The system in question. All particles
move with the constant speed shown.

2. The Hopfield model for auto-associative memory

The random model

Structure: A randomly diluted graph with i - j weight W;; = %SU Z"{’=1 fl.”f}‘, where ¢;; € {0,1}, i.i.d.
Parameters: M ‘patterns’ £, ..., &M, ¢t € {—1,1}¥, and the dilution probability.

States: The configuration a(t) € {—1,1}" of ‘spins’ at time t.

Dynamics: The spin evolution
N

T:0;(t + 1) = sign Z

J=1

(OW
The fixed points of T correspond to the patterns &; and are the minima of the Hopfield Hamiltonian

N
Hy(o) = — Z W;jo;0;.

Lj=1

(Left) The Hopfield
model with a noisy input
and resulting fixed point
corresponding to a
learned pattern.

(W.Kinzel)

The dilute model

Some (even many) weights W; can become small and contribute little. Randomly removing weights have
been shown to preserve pattern retrievability surprisingly well. Better:

Remove the smallest weights!

«  Study the structure of the remaining graph

« Isthere a correlation between the data (f‘) and the structure?

*  Are certain graphs more ‘efficient’ than others, i.e. large M but few non-zero W;;?

« Can the bounds of random dilution be improved with this method?

*  We currently study different random structures

3. Neuronal networks and graphs
The neuronal network in the brain is a directed graph:
* Neurons are nodes
* Axon-dendrite connections are directed edges between nodes

Neuroscientists are working hard to map these graphs, but what do we want that for?
We need dynamics on the graph structure in order to understand its function! Models
exist that generate similar graph structures (see right).

Two simple suggestions:

Cellular automata: a node is ‘on’ when at least n neighbours are ‘on’ and is ‘off’
otherwise.

* Long-term behaviour: all turn off / oscillatory / all (or a subset) turn on
« Certain parameters correspond to certain behaviours.
Phase transitions?

The Hopfield model (above) where only edges present in the graph can have non-
zero weights.

* How do these graphs compare with the random model above?
* Are they more similar to any found in the dilute model?

Neuronal networks are evolutionarily adapted to perform their function well, so
finding dynamical models where similar structures arise, and outperform purely
random variants, can give new insight into that functionality!

lllustration of a neuronal network.
(Hill, Wang, Riachi, Shiirmann, Markam)

Two simulations and the resulting graphs.
(Ajazi, Chavez-Demoulin, Turova)

Henrik Ekstrom | Lund University | Matematisk statistik, Solvegatan 18, 223 62 Lund | Henrik.Ekstrom@matstat.lu.se
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Description

My research topic is called Learning Dynamical Systems, and this can be applied to a broad area of problems. It provides backbone
algorithms for digitalization of industry and society, such as core technology in autonomous systems with applications like smart

buildings, self-driving vehicles, and self-learning robots.

| am currently looking at a wide range of problems structures related to the estimation of the belief (posterior distribution) of an agent
on the state of the world, and the estimation of its state and sensor properties. The main application we are working with is the inverse

filtering problem for counter-adversarial autonomous (CAA) systems.

Background & Motivation

We consider the problem where an
agent is modeled as a discrete-
time hidden Markov model (HMM).
At each time step, this agent:

+ is in a state of the world x(k),

* receives an observation y(k)

« from which it wupdates its
posterior distribution 1r(k) (belief
over the states of the world),

* and based on which it performs
action a(k).

Our goal is to, based on our knowledge of the state of the world
and the actions done by the agent, learn its internal variables such
as the set information it has, and its posterior distribution and state.
This setting is related to inverse filtering and is important for
applications such as social learning, inverse portfolio allocation
and counter-adversarial systems.

Research Goal & Questions

» In [1], Mattila et al. showed that from
the posterior (k) we can get an
estimate of the agent’s sensors and
the state x(k).

But do we have access to (k)? No!

+ So, given the state sequence
x(0),...,x(k) and actions a(1),...,a(k),
how to estimate the adversary’s
beliefs m(1),...,m(k)?

Methods & Preliminary Results

In [2] we show that we can
obtain a set of beliefs T(k),
consistent with the actions a(k)
performed by the agent, as
shown in blue in the figure on
the left.

In a future paper we will show that we can
get a better estimate of the set IN(k) by using
a smoother for the inverse filter (figure on
the right).

Roadmap & Milestones

The goal is to later apply these inverse problems in an
inverse Reinforcement Learning setup.

For example, if we have a neuroscientific theory, such as how
temporal perception is coded in the brain, how can we test it
in robots? By observing the agent’s actions, can we infer its
belief (k) on the state of the world?

References
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[2] R. Mattila, I. Lourenco, C. R. Rojas, V. Krishnamurthy, and B. Wahlberg, “Estimating private beliefs of Bayesian agents based on
observed decisions,” IEEE Control Systems Letters, vol. 3, pp. 523-528, July 2019.
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4 Introduction N[ Coupled Depth/Normal Estimation )

In this paper, we proposed a new deep learning based dense monocular
SLAM method. The proposed framework constructs a dense 3D model ‘ e ‘
via a sparse to dense mapping using learned surface normals. With - [
single view learned depth estimation as prior for monocular visual
odometry, we obtain both accurate positioning and high quality depth
reconstruction.
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Deep Learning for Drug Discovery
Johan Fredin Haslum

Description:

Developing new drugs is a long and costly process, both in terms of time and resources. Early stages of the process include High
Throughput Screenings (HTS) which involves investigating the effect of applying a compound to a cell line and observing the
response. Predicting the outcome of such experiments could speed-up the drug discovery process and provide new insight into the
underlying biological processes. To achieve this, experimental data from previous HTS is repurposed and used to train Deep Learning
models to predict drug activity over a number of different cell lines and targets.

Background & Motivation

Once a target that regulates a
certain disease has been
identified a compound that has an
effect on the target is of interest.

Research Goal & Questions

The dataset used in this project
were not produced with machine
learning in mind and presents a
number of challenges.

Finding such a compound often + Sparse

involves screening thousands of » Diverse Origin
compounds. What if instead of » Diverse Datatypes
screening thousands compounds » Dataset Size

we only screen the hundred that
are most likely to have an effect The goal of this project is to develop Deep Learning methods
based on or predictive model? capable of performing well when applied to datasets exhibiting the
challenges presented above.

Methods & Preliminary Results Roadmap & Milestones

Using florescent microscopy » Developing Semi-Supervised
images of thousands  of Learning approaches to
compounds applied to a certain improve current prediction
cell line, combined with activity power with sparse labels
data for the same compounds » Exploring Multi-Modal Deep
but different cell lines one can Learning approaches to draw
build a Deep Learning models information from diverse data
capable of predicting drug sources

activity. The approach is similar » Utilizing Explainable Al

to a supervised learning binary methods to find biological
classification task and has been insights and relations found
shown to yield actionable results by the Deep Learning models

by other research groups which
we have reproduced

Combining multiple data sources

« Academic Advisors * Industrial Supervisors
+ Kevin Smith » Erik Mullers
* Hossein Azizpour < Johan Karlson
» Karl-Johan Leuchowius




Planning for minimum
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Abstract

By planning for minimum uncertainty, it is possible to improve the positioning

accuracy of an autonomous system in difficult and GNSS-degraded environments.
The project aims at incorporating information regarding landmark densities, as well

as terrain properties, in order to plan a path that minimises the expected

positioning uncertainty.

Machine learning (ML) will be studied for the purpose of estimating landmark
densities based on ordinary maps. The project intends to evaluate the proposed

approach on an autonomous system together with the Swedish Defence Research

Agency (FOI) in Linkdping.

Background

Traditional planning assumes a low and uniform
uncertainty in the position estimate throughout
the planning space. This assumption is not
always true due to, e.g.:

« obstruction of sensor measurements;

* GNSS-degradation;

* lack of recognizable and static features; and

* uneven, unstable, or even moving ground
surfaces.

All of these factors need to be considered to

assure mission success in real-world scenarios.

Solving this problem is often referred to as
informative path planning (IPP).

Project goals

The main objectives of the project is to:

« jointly solve the task of state-estimation and
action planning to predict positioning
uncertainty;

* be able to plan the execution of a task in
unstructured environments; and

» be able to model the effects of terrain
properties on the motion of the system.

Key concepts

No assumption of known landmarks are
made.

» Expected information gain is maximized
given knowledge of landmark densities.

* Aims at using ML for identifying beneficial
vantage points during planning.

+ Utilize ML for estimating landmark densities
from pre-existing maps and sensor data.

* Incorporate negative information.

Preliminary results

Currently, the project has:

+ developed theory to use virtual landmarks to
describe the information potential in unseen
areas;

» developed an algorithm which calculates an
approximate solution to the IPP problem; and

+ validated the IPP solution in a simulated
environment.

Figure 1: Sensor platform for data collection and
real-time execution of positioning algorithms.

Evaluation

To evaluate the performance of the developed
methods in realistic scenarios, and to visualize
the technology to different stakeholders, a proof-
of-concept platform will be developed based
upon a pre-existing positioning system.

Collaboration

The project is being funded by the division of
C4ISR within the Swedish Defence Research
Agency (FOI). The project will follow the
Swedish armed forces Research and Tech
(R&T) program for the area of autonomous

systems and the area of sensors and signature
management, which includes research on
autonomous localization using sensor data.
These R&T programs provide a wide set of
international cooperation's through, among
others, EU, EDA and NATO that will be utilized
through out the project.

Figure 2: Planned path based on landmark densities plotted with an estimated trajectory with sampled landmarks. The dark green area has a lower
landmark density, the algorithm therefore avoids the area and finds a path through the bright green area which has a higher landmark density. The
realizations of the different paths are created by sampling landmarks from the densities and letting a simulated self-positioning autonomous system

move along the path.

LINKOPING
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Design and Formal Verification of a Safe Stop
Supervisor for an Automated Vehicle

Jonas Krook, Lars Svensson, Yuchao Li, Lei Feng, Martin Fabian
krookj@chalmers.se, larsvens(@kth.se, yuchao@kth.se, Ifeng@kth.se, fabian@chalmers.se

Questions for a safe stop supervisor:

o What safety benefits are achieved by formally verifying the software?

» What requirements can be proven? Which cannot be?
» How is nominal functionality included in the architecture and methods?

Safe transportation; can we STOP here?

The scenario considered is when an
automated vehicle is parked in a spot
at parking lot A, and it receives a
transport mission where it needs to
drive to and park in a goal spot at
parking lot B. To do this, it first has to
plan a path connecting the two park-
inglots via the road network. Then it
needs to generate a path from a point
in A to the road network. When it
arrives at parking lot B it needs to
construct a path from the road to the
goal parking spot.

2 /
% \
Transition Point 2 \

Transition Paint1

There is no driver so the vehicle
itself needs to ensure safe driving,
which means that the vehicle always
should be able to reach a safe state
while driving, if an error occurs. For
driver assistance functions the safe
state is usually to cede all control to
the driver, but for automated vehi-
cles we cannot let the vehicle con-
tinue to move uncontrolled. So the
safe state has to include being sta-
tionary. However, the vehicle cannot
stop just anywhere.

o Structured Area
Path Planner [SPP]
Unstructured Area
Path Planner (UPP)

Safe Stop Trajectory
Planner (SSTP)

Fig. 1: System architecture.

Fig. 2: Example mission with paths
and transition points.

Going for SPIN [What the model checker proves)

The model checker SPIN is used to formally prove the following requirements
when the supervisor is interacting with the rest of the system:

 The supervisor and the four concurrent planners shall never stop at invalid

end states.

o There is always a future state in which the vehicle is stationary.

» When arriving at the goal position, all paths must have been generated.

known already.

cannot have failed.

and the SSTP must have failed.

If the vehicle passes the end point of a path then the next path must be
If the vehicle stops safely then a failure must have occurred and the SSTP

If the vehicle stops by emergency braking then a failure must have occurred

o If a failure occurs then the vehicle must be stopped safely by SSTP. If SSTP
fails then the automatic emergency brake must perform an emergency stop

SPIN also produces a counterexample when trying to prove that it is not possi-
ble to reach the goal, showing that the supervisor can successfully coordinate

a transport mission.

https://github.com/krooken/wasp-des-rcv

https://research.chalmers.se/publication/509469

One Supervisor to rule them all

To accomplish the transport mission,
a supervisor brings together the two
nominal path planners UPP and SPP,
and makes sure that the SSTP stops
the vehicle in a safe spot (e.g. on the
shoulder) if and only if an error oc-
curs. The supervisor is implemented
using model based design and inte-
grated in a ROS environment.

The proposed supervisor can handle
GPS sensor failures and path gener-
ation failures. Extensions for addi-
tional types of failures can be accom-
modated with relative ease.

Formal verification requires a model
of the vehicle and the software, so a
verification model of the supervisor
is derived from its implementation.
Only key aspects of the other soft-
ware components in Fig. 1 are mod-
elled. The vehicle is modelled as a
standard discrete-time vehicular lon-
gitudinal dynamic system along the
length of the path.

Going for a spin
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Fig. 4: Position and state during a
simulation with a GPS failure.
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Fig. 5: Position and state during a
drive with injected GPS failure.

https://vimeo.com/319427372
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Fig. 3: The proposed supervisor.

Take-aways

It is possible to formally verify the
implementation and not only the
design, giving more confidence of
correct software.

Implementation with verification
in mind encourages safer coding.

Only key abstract aspects of the
nominal functionality need to be
modelled for verification.

1t is difficult to formally verify re-
quirements on nominal function-
ality with the chosen method.

Verification requires modelling of
software, which is manual and er-
ror prone.

The current design may fall back
on automatic emergency braking
to stop. Future research should
look at strategies that ensures the
availability of SSTP.

https://doi.org/10.5281/zenodo.2651006
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ANALYSIS OF A DEEP ONE UNIT RESIDUAL NETWORK

M.G. Larson, K. Larsson, J. Vallin

We consider a deep residual neural network with a simple form where each layer only contains one unit. In addition to the inner
weights and bias each layer also has an outer weight vector which allows mapping into different dimensions. Such a network
increases the approximation capacity with increasing depth and we show that this arcitecture can be used to solve classification

problems in a robust and accurate way.

NETWORK ARCHITECTURE CLASSIFICATION PROBLEMS N

We construct our network by stacking several A binary classification problem can be phrased as follows: given two
residual layers of the form shown in Figure 2. One \ / sets of data points S; and S, belonging to two different classes, train
such layer maps the input vector x, € R% to a Y a network such that it will classify unobserved points correctly. In
vector x,.1 € R%1 by the piecewise linear map- 7 i ) most cases the data lives in a high dimensional space but a common

ping: ) hypothesis is that the data itself resides on some embedded low
-/ \_/' N

X1 = Anxy + apRelLU(by - x, + 1) = To(x0), Fiqure 1: A residual layer dimensional manifold embedded.

where A, € R%1*% is the identity if d, = dpt1, with one unit.
a, € R% b, e R% and ¢, € R.

‘ReLU

There are two different point of views to this problem. If the network
is seen as a composition of mappings, the problem is to construct these

We may restrict b, to be a unit vector since the ReLU function allows mappings such that the datasets become linearly separable in the final

factoring out positive constants. A network of depth N will be a function coordinate system. In Figure 4 one can see how the spiral dataset evolves

F : R% — R constructed by a composition of N such mappings followed through the layers of a 3-dimensional network. In the final layer the

by an affine transformation L : R — R. datasets have been transformed such that they can be separated by a
F(x)=LoTyoTy 10...0Ty(x). hyperplane.

We define the dimension of the network as the maximum of all dy, ..., dn.

PROPERTIES OF THE MAPPING

Since b, is a unit vector, the function pp(x) = b, - x + ¢, will be the
signed distance from the hyperplane given by b, - x4 c, = 0. This defines Figure 4: Evolution of the spiral dataset embedded in R®.

the two half spaces; Alternatively, if the network is viewed as a function F, the classification
o Hy = {x:ps(x) <O}, problem is solved if F has a level surface that separates the two sets.
o Hi = {x: ps(x) > 0}. Then, a new observation is classified according to its position relative to
For d, = dy.1 the mapping T, : R% — R%*! the level surface. In Figure 5 two classification problems are shown where
is the identity on H,, while points in H; will be 4-dimensional networks were trained to solve the problems. The resulting
mapped. Depending on the value of the quantity green level surfaces separate the different classes in both cases.

an-by, the mapping T, will have different properties:

ea,-h,> —1, T, is a bijection,
ea,- b, = —1, T, projects H, onto the hyper-

plane, Figure 2: Visualization of

02, b, < —1, T, is a folding that maps H;f on amap T, : R” — R,
H,.

LOCALIZING STRUCTURES

Given a set of k hyperplanes in R? we show that a network of dimension
d+1and k layers can realize a function whose support is precisely N%_ H;".
In other words, any d-dimensional convex polytope can be represented by
a level set of a (d + 1)-dimensional network with sufficient depth.

Moreover, for ST = {x : F(x) > 0}, ie. the positive level set of a
network, we can obtain positive level sets corresponding to the following
fundamental set of operations by adding one layer:

e Union: ST U H,

e Intersection: St HY,
e Difference: S*\ H,
e Complement: (5%)°.

By iterating these operations more complex geometries can be con-
structed as well.

Figure 5: Two different datasets where the trained networks have constructed level
stirfaces that separate the datasets.

Figure 3: Two polyhedras (convex and non-convex) as levelsets of two different net-
works.




Learning of control
architectures for robot

automation
Jonathan Styrud

INTRO

» The main obstacle holding robots back
is the effort needed for task
programming. When the program is
generated automatically with show
and tell like programming, robot
automation will be affordable for all.

» This project will investigate methods
for collaborative robots to
autonomously learn control
architectures such as behavior trees.

FULL PROJECT TITLE

Autonomous learning of control
architectures for real-time industrial
robot automation in a dynamic
environment

METHODOLOGY
Restrict scope. Assume vision and
grasping is solved, assume HMI
interface exists, assume basic skills are
in place, restrict to point-to-point
manipulation etc.
Use simulation, real world trials are
too expensive.
Select control architecture that is
modular and transparent, such as
behavior trees. Don't try to do pixel-
to-torque.
Start small and simple, and later
expand with more complex tasks.

RESULTS
* Nothingto report so far!

Behavior tree example:

The main
back is th

program heflithe program is

Overall picture:

generate

automati

Automatic planning is not
feasible because it typically
assumes:

* Perfect prediction of the
effect of various actions

* Perfect knowledge of the
system state

* Small upper bounds on
complexity of the assembly
tree

’ \ " (s i

a picture for
act details




Ethical Verification of
AlISystems

Julian Alfredo Mendez, Zahoor Ul Islam

julian.mendez@umu.se, zahoor.ul.islam@umu.se

This project seeks to develop methods to verify and monitor the ethical behavior of Al systems based on the observation of their input and output

according to a continuously evolving societal optimum.

BACKGROUND & MOTIVATION

e Current Machine Learning approaches can be notoriously dilficult to monitor due to their use e Find expressive modelling languages that
of black box algorithms. can be easily understood by humans, but
generate tractable fragments for auto-

e Trust on autonomous systems depends on the possibility to verify and minimally control their mated verification.

behavior. [1]

e Model ethical contexts using formal lan-
guages, possibly taking advantage of se-
mantic reasoners [3| or properties of spe-
cific domains [4].

e The development of theories and methods for control and verification of Al systems requires
going beyond traditional methods:

— These systems operate in open environments, which cannot be fully described nor defined
a priori.

— Opacity is inherent in open environments because the systems are developed and operated EXAMPLE

by different parties.

e AT systems must comply with societal values and ethical principles, such as fairness, non- This is a minimalistic example:
discrimination, safety, and privacy.

e ethical _rule(py, pa,p3) =
p1 A (p2 V p3) A —(pa A ps)

e cthical value =v

METHODS & PRELIMINARY RESULTS (an acceptable value according to society)
° blackibox(zl, T2, .1‘3) =
The following diagram shows how an Al system can be tested. wy -2y - (e +a3) - (1 —ws - a9 - x3)

e black_box_conf = (wy,w2)

Config. .
Black Box ° IHPUt_tr(p17p2’p3) = (131,1‘2,5(}3)
such that z; = 1 if p;, 0 otherwise

Test Generator Trane Troutput »|  Evaluator e output tr(z)=x>v
Wrapped Al System

black box conf ethical value result
1. (0.5, 1.0) 0.5 passes

2. (0.5, 0.5) 0.5 fails

o Eenical | 3. (04, 1.0) 0.5 fails
Context 4. (0.4, 1.0) 0.4 passes

1

Failing cases

Figure 1: Test environment.
2. {(true, true, true) [0.5]}

e Ethical Context: ethical norms written communicate with the AI system. (it should be < 0.5 to model false)
in a formal language, which can use, for ex-

ample, logical rules and numerical values. e Wrapped AI System: Al system inside 3. {(true, false, true) [0.4],
’ a glass box [2]. (.true,true,false) [0.4]}
e Black Box: an opaque Al system. (it should be > 0.5 to model true)

e Test Generator: generates tests to verify

e Black Box Configuration: a particular the AT system. s i
state of the AT system. BIBLIOGRAPHY
e Evaluator: verifies whether the Al system
e Input/Output Translators: layers to is ethical with respect to an ethical context. [1] Virginia Dignum et al. FEthics by Design:

necessity or curse?. Proceedings of the 2018
AAAT/ACM Conference on Al, Ethics, and
Society, 2018.

A. Aler Tubella, A. Theodorou, F. Dignum,
and V. Dignum. Governance by Glass boz:
implementing transparent moral bounds for
AT behaviour. IJCAI, 2019.

Julian Mendez. jcel: A Modular Rule-based
Reasoner. ORE 2012.

Carsten Lutz. Description Logics with Con-
crete Domains A Survey. Advances in
Modal Logic. Wold Scientific Publishing Co.
Pte. Ltd., 2002, vol 4.

[2

ROADMAP & MILESTONES

. Identify AT systems that require ethical monitoring or verification. 3

2. Find expressive formalisms for ethical contexts. 4

3. Design an input/output protocol to test the AT systems.

4. Develop a prototype for ethical verification.
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Robust learning of geometric equivariances

Karl Bengtsson Bernander, Joakim Lindblad, NataSa Sladoje

ECentrum for bildanalys

Uppsala universitet

Centre for Image Analysis, Department of Information Technology, Uppsala University, Sweden

Abstract

We extend convolutional neural networks (CNNs) as to provide rotation equivariance. We evaluate several methods that
incorporates this property into the network architectures. We start by replicating and evaluating these methods on existing
datasets. Our plan is to apply promising methods to our own dataset consisting of microscopy images of cells, weakly labelled as
cancer or no cancer. We expect that incorporating rotation equivariance into CNNs will increase the expressive capacity without
increasing the number of parameters, reducing overfitting. Also, since data augmentation can be reduced, misclassification due

to interpolation artifacts should decrease.

« Group-equivariant convolutional networks (G-CNNs) [3], using
group-convolutions.

« Steerable filters [4], using linear combinations of a system of atomic filters
to achieve arbitrary angular resolution w.r.t the sampled filter orientations.

¢ Warped convolutions [5], transforming the image to the log-polar domain.

« CFNet [1], using various filters at rotations in corresponding conic regions.

Existing work

One feature of standard convolutional neural networks (CNNSs) is translational invariance: the result of convolving an input with a filter
and then shifting the output is identical to shifting the input and then applying the convolution. We are interested in other
equivariances, such as rotations and scaling. Recent works on rotation equivariance in CNNs include:

T, ®(f)=®(T,f)
Rotational equivariance: filtering (@) an input f, then rotating (T,), gives the
K same result as filtering on the rotated input. Different convolution schemes [1] /

Experiments and replications
We have begun the empirical part of the project by replicating some of the

most promising methods for achieving rotational equivariance for CNNs
[1], [3], [4]. As areference point, we focus on the rotated MNIST dataset.

Classification accuracy on rotated MNIST for different CNN architectures

Method Test error (%)
Standard CNN 5.03

G-CNN 2.28

CFNet 1.75
Steerable filters 0.71

Samples from the rotated MNIST dataset

Further directions

We plan to apply promising methods to our own dataset,
consisting of microscopy images of cells from the oral cavity.
They are weakly labelled with cancer or no cancer.

The usage of rotation equivariant CNNs should increase
accuracy by avoiding interpolation artifacts caused by data
augmentation. We will also compare equivariances versus
invariances, depending on texture and local shapes.

We are also interested in studying
equivalence. Meaning, for different
neural networks, we want

to compare similarities in

captured information content -
that is, if there exists

some map between them [2].

Microscopy image of cells
from the oral cavity
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An Optimization-Based

Receding Horizon

Trajectory Planning Algorithm

Kristoffer Bergman*', Oskar Ljungqvist®, Torkel Glad*, and Daniel Axehill*

*Linkoping University, fSaab Dynamics

Motivation

Problem considered: Trajectory planning for nonlinear systems
in unstructured environments.

Method: Combine a sampling-based motion planner and areceding
horizon optimzation algorithm.

Drawback of state-of-the art: Does not guarantee feasibility be-
yond the planning horizon (recursive feasibility).

Main contribution: Use the solution from a feasible motion plan-
ner as terminal manifold to provide theoretical guarantees on feasi-
bility during the entire planning horizon.

Problem formulation
Trajectory planning is an optimal control problem (OCP):

t

minimize J.(a0, ul.)) = U (t), w(t))dt

subjectto x(t)) = @y, x(ty) = xy, )
w(t) = fla(t), u(t)),
(t) € Xyeo, u(t) €U t € [ty ty].
« Computationally expensive to solve (or improve nominal solutions)
for long horizon problems
« ldea: use receding horizon planning (RHP)
* Relies on a feasible nominal trajectory (&(-), w(-), ts)
computed by a motion planning algorithm
— Used computationally to warm-start the RHP-step
— Used theoretically for convergence guarantees

Receding horizon planning

« Introduce timing variable 7, and cost-to-go function W(7;)
t+T
minimize J(:I?cur, uk(~), Tk> = \I/k-(Tk) + é(ack(t), uk(t))dt

(), 7 t
subject to xi(tr) = Tew, ity +7T) = ZTp_1(7%)
xi(t) = f(zi(t), u(t)),
.’Ek<t) € Xiees te [tjﬁ tr + T]
uk(t) ceuU.
« Uses previous solution z;_(-) as “anchor” or terminal manifold
e Theoretical guarantees:
1. Recursive feasibility
2. Non-increasing objective function value J (o, w(-))
3. Finite number of RHP iterations — convergence to x;

&)

Practical algorithm

« Practical issue: want to use piecewise continuous control inputs

» Nominal solution &(-) and cost-to-go function ¥ (-) not continuously
differentiable — (2) can not be solved using standard OCP interfaces

« Introducing minor adjustment to (2) such that standard direct
optimal control methods can be used

e Theoretical guarantees still hold using this adjustment
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VNS

—Nominal - Optimized - Remaining |

obstacle /

Planning horizon

Simulation study

« Atruck and trailer system in confined environments.
A lattice-based motion planner used to compute nominal solutions.
* Compare performance using different planning horizons 7.

[*Nominal - Full Horizon (FH)

T=060s]

Summary of results

* AJ, : Difference in objective function value.

e tryp - Computation time per RHP iteration.

» Aty : Difference in latency time (i.e first RHP iteration)

e At Difference in total time (execution time + computation time)

T [s] 20 40 60 80 120 Full horizon
Adiy [%]]—24.9 —35.2 —40.8 —41.7 —43.4  —43.7
trup [S] | 0.09 029 0.77 2.0 104 17.0
Af[s]] 035 073 20 35 123 17.0
Aoy [s] |—32.6 —45.7 —53.7 —54.0 —45.9  —44.1
) AJRH std dev Steering angle « [rad]
_ —30 0.5 =
o
T574().\
%“
/I
—60 | ;
60 0 50 100 140
20 60 pgl0 140 t[s]
Conclusions

¢ A new two-step trajectory planning algorithm introduced.
« Allows for trade-off between latency against solution quality.

* Nominal trajectory exploited for feasibility and convergence guar-
antees.

e Future work: Dynamic scenarios with online re-planning.

Manuscript available online at: https://arxiv.org/abs/1912.05259
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Traction Adaptive Motion

Planning in Critical Situations

Lars Svensson, KTH

Problem Formulation

As deployment of automated vehicles increases, so does the rate at which
they are exposed to critical traffic situations. Such situations, e.g. a late
detected pedestrian in the vehicle path, require operation at the handling
limits in order to maximize the capacity to avoid an accident. Furthermore, the
physical limitations of the vehicle typically vary in time due to local road and
weather conditions. In this research project, we tackle the problem of motion
planning and control at the limits of handling under time varying constraints,
by adapting to local traction limitations. Details are provided in [1].

Real world example of the motion planning problem
in a critical situation

The corresponding optimal control problem. In our approach,
locally varying traction information enter as time varying

J(Tpejgs uk)e)
Uty  UN—1[t
st Tppa)e = f (Trge upe) -
Thgp € Xajer rge € Upgo ()] (L)
Vk=0,...,N—1,
ot = Tty TNje € Xyt
https://en.wikipedia.org/wiki/Death_of_Elaine_Herzberg nw L = 0.6 =03

Proposed Method

In order to capture the effects of
bounded tire forces, we use a
dynamic vehicle model:

Here is an example of how the
horizontal force limits vary in different
conditions.

lea  Front

Where the states propagate as:
. Uz 008 (Ay) — vy sin (Ag) wet
5= 1 —dk. ’
d = vy sin (Ag) + vy cos (Az)),

vy cos (A)) — vy sin (Ay)

A i
b=t Yo :
- 1 Snow o )
Y= A (tFys — 1 Fye) . .
i = .
iy = — (F, — D) — gsin(6), T

m
by = (Fyr + Fyr) = vatp + gsing. We introduce the time varying tire
force bounds as a time varying

with lateral and longitudinal tire forces constraint in the optimization (1).

as inputs. We model the locally
varying traction limit as a time varying
input constraint Uy, determined by

Fi < pF.
Where F, varies according to the pitch
dynamics.

This introduces further challenges in
solving (1) in real time, which we
address by augmenting RTI-SQP [2]
with a trajectory rollout method [3].
The algorithm is summarized as

Algorithm 1 The SAA-RTI Algorithm

Results and Discussion

First, we compare traction adaptive
trajectory planning with non-adaptive
for an obstacle avoidance scenario.
We make two observations:

1. When adapting to reduced traction,
we observe improved control,
because adapting avoids planning
dynamically infeasible maneuvers

2. When adapting to improved
traction, we observe a lower closed
loop cost, because adapting enables
full utilization of the available traction.

Closed loop trajectories for comparison between
adaptive and non-adaptive trajectory planning and
control. The vehicle is depicted in gray, a suddenly
appearing obstacle in red. In the force plot to the right,
blue crosses denote the commanded tire forces and
magenta circles denote actual tire forces. The solid and
dashed black lines represent the actual and assumed
friction boundary respectively.

Results from Monte Carlo simulation of the critical obstacle
avoidance scenario 1200 runs, with varied obstacle position,
initial velocity and road geometry. J; denotes the average
closed loop cost and P, the empirical accident probability
over all runs.

Strategy Ja | Pa
non-adaptive | 533 | 42%
adaptive 537 | 38%
non-adaptive | 3.84 | 13%
adaptive 337 9%

Road Conditions

wet road: frue = 0.55

dry road: fiac = 0.95

Second, we generalize the results by
means of Monte Carlo simulation.
Results indicate that adaptation
improves the vehicle’s capacity to
avoid accidents both at reduced and
improved traction.

Third, we compare SAA-RTI similar
methods, namely standard RTI-SQP
[2] and state space sampling [3] (with
MPC tracking). SAA-RTI represents
an improvement in terms of optimality
w.r.t physical capabilities and in terms
of capacity to avoid local minima.

Comparison of closed loop trajectories between SAA-
RTI (blue) and state space sampling with MPC tracking
(orange)

Example of how SAA-RTI avoids local minima. Orange:
converged SQP solution initialized left of obstacle. Blue:
converged SQP solution initialized right of obstacle.
Gray: Closed loop trajectory of the vehicle controlled by
SAA-RTI

Conclusions and Future Work

Our results indicate that the concept of traction adaptation in motion

planning:

* Increases the capacity to avoid accidents when adapting to both

deteriorated and improved traction

The proposed method - Sampling Augmented Adaptive RTI
* Enables optimality w.r.t time varying input constraints
» Reduces sensitivity to bad local minima

Next steps in this research project include full scale vehicle experiments
and integration of online tire-road friction estimation.

Input: ay, "1, M, O, iy

Output: 7*

: T{ < shiftAndEnsureFeasibility(7;* ;)

Uy < computeAdaptiveConstraints(sy);)

S, < feasibleTrajectoryRollout(z,, M, Up)e)

for each trajectory 77 in [S;, 7] do
J(7;) « evaluateCost(7;)

end for N

Ty < selectLowestCost(arg J(7;*))

Agjt, Bije < linearizeDynamicModel(7;*)

Ti compuleSlaleConstrqints('f;". O, M)

T = (@ ugy,) < oPUCTL Uke, Xey Agjes Brye)

return 7;*

F.p= e (mwgh — mghsin @ 4+ mgl, cos )
rti

1
B PN (=migh + mghsin @ + mgly cos 0)
il

mTeweNQLE BN

and p is identified online. and further elaborated in [1].
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Model predictive control for autonomous landings in a
search and rescue scenario at sea

Linnea Persson, KTH Royal Institute of Technology

Description

This research is about a Model Predictive Control approach for autonomous landing of a quadcopter on a cooperating ground vehicle.
The landing maneuver is executed in a cooperative manner where both vehicles take actions to fulfill their common objective. The
maneuver is designed to be feasible under a range of conditions, including scenarios where the boat is moving across the water or
when it is subjected to disturbances such as waves and winds. During the landing, the vehicles must also consider various safety

constraints for landing safely and efficiently.

Background & Motivation

The research is motivated by the large-scale demonstrator arena
WARA-PS, which is equipped with autonomous boats and
drones that collaborate to perform various tasks related to
search and rescue at sea. Search and rescue missions benefit
greatly from drones since they allow for an extended situation
awareness and can work independently from the boats.

However, drones tend to have a very limited battery time, and
as such the range that they can reach is limited between
charges. To extend the usage time, we wish to wuse the
Unmanned Surface Vehicles as mobile charging stations, where
drones can takeoff and land as necessary.

Research Goal & Questions

The objective of this work has been to show how MPC can be
applied to autonomous cooperative maneuvers. The system
must fulfill a set of safety constraints during the landing, as is
illustrated here in the form of a spatial constraint to avoid
protruding parts. The objective is to use algorithms that are
applicable to real-life scenarios and to verify in real
experiments.

Methods & Preliminary Results

The algorithms are implemented both in hardware-in-the-loop
simulations, where we demonstrate some of the different scenarios
that the algorithm is expected to handle, as well as on a real
drone landing on a virtual boat. For implementation on the real
boat, we will look into different ways of doing relative positioning.

Current research

Current research directions include distributing the computations
on the two vehicles and defining communication and update
conditions for the cooperative trajectory. In recently submitted
papers we perform landing experiments where we are able to
increase the look-ahead time by several seconds only by
distributing the computations, and an even further increase was
achieved by combining an inner and outer MPC controller. This
approach was also shown to make the system more robust to
communication delays.

We are also working on defining shrinking horizon conditions that
work in real-time while also being able to handle certain
disturbances. The objective is to be able to adapt the prediction
and the precision of the computed trajectories to the distance
until the rendezvous.

The system consists of a DJI matrice 100 drone and a rebuilt CB90 boat from Saab Kockums.




Models for efficient safety
assurance for automated driving
system

Magnus Gyllenhammar, magnus.gyllenhammar@zenuity.com
e

For releasing an Automated Driving System (ADS) into the public it is necessary to craft a credible and complete safety argumentation. Without
a solid safety argumentation a perfectly working ADS might be kept off the market due to lack of safety proof. There are several caveats in
crafting a safety argumentation. As the ADS is intended to operate in an uncertain environment, with other active traffic participants, one of the
challenges is understanding what is to be expected from the ADS and what the ADS can expect from its environment. Having a model for the
environmental challenges is crucial in defining clear requirements on the system as well as to enable verification and validation (V\&V) efforts of
the product. This project sets out answer the question: How to know when the verification and validation of an ADS is complete? The strategy
to argue for completeness needs to be efficient to be industrially viable. Further, a way to leverage this strategy to support continuous safety
argumentation will be investigated.

= Unnecessarily conservative Why is it important to understand the environ-

= Lost availability mental challenges of the ADS? If we rely on the

= Safety risk = Unnecessary cost laws of physics we will have a conservative ADS

I ! \ with high cost and low availability. Rule-based

Rule-based Statistically probable Laws of physics methods, on the other hand, are simple but might

! come with an elevated safety risk as the actual

challenges might differ from what the rules

+ Simplicity/Pragmatic - Yield a conservative system with: ~ postulate. Using data to estimate what is
+ éesls conse[)vatiw'e1 ADS - II:OW av?filablility statistically probable will not only make the
L v o b R dovelopment more effient (as compared to
in market physical models), but it will also make it safer than

rule-based methods.

The statistical models are constructed using Data o What is required from
collected and analysed data. The models can later collection Statistical the validation?
be used to judge what is required during 4

validation, be it through field test, test on test @ models

tracks or in simulations. Additionally, the models
can be used to answer, in detail, what the ADS
needs to handle. Thus feeding information into the
specification of the system as well as defining its
operational design domain (ODD). 4 : :
To make this possible research needs to be done YWhat does the ADS J _ S
on how to construct the models, (a) what data nNeed to handie?
should be used? (b) how can the models be

connected to the specification or the ODD? and

finally, (c) how can this help in achieving efficient

safety assurance of the ADS?

Field test Test track

. . o .
What is required to construct the model* Outcome and impact
Data * Providing an efficient strategy for safety
+ Field tests assurance of the ADS
* Reducing unnecessary safety margins and
=) Structurs for quantification _ minimising the residual risk before
« (Time-series) Segmentation: Scenario framework, ontology, etc.
+ Parametrisation deployment

» Enabling timely, safe and continuous
deployment of ADS features

* Supporting the reuse of argumentation and

Connecting to specification, operational design domain and validation insights from previous product/feature

releases when deploying new features

Modelling, analysis and inference

2
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