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Poster no. First name Last name Title of poster

1 David Gillsjö Efficient Merging of Maps and Detection of Changes

5 David Mattos Data-driven Continuous Evolution of Smart Systems

13 Emil Brissman Representation Learning and Visual Localization

17 Emilio Jorge Exploration and uncertainty in generative networks for reinforcement learning

21 Emir Konuk Towards more diverse and controllable generative models *

25 Erik Jakobsson Condition Monitoring for Autonomous Mining

29 Filip Wikman Deep Learning in Continuous Time *

33 Filippo Vannella Real-World Reinforcement Learning for mobile networks optimization

37 Francesca Tombari Homotopical decompositions of Vietoris-Rips complexes

41 Fredrik Hagebring Towards Planning and Scheduling of Unknown Systems using  
Simulation-based Active Learning *

45 Georg Bökman How to inject geometry into deep learning *

49 George Osipov Constraint Satisfaction Problems over Infinite Domain

53 Gizem Çaylak Deep Probabilistic Programming

57 Hanna Hultin Generative Models and Reinforcement Learning in Finance

61 Hannes Eriksson Epistemic Risk-Sensitive Reinforcement Learning *

65 Henrik Ekström Dynamics enhances the capacity of networks

69 - - -

73 Inês de Miranda de 
Matos Lourenco

Learning Dynamicals Systems

77 - - -

81 Jiexiong Tang Sparse2Dense: From direct sparse odometry to dense 3D reconstruction

85 Johan Grönqvist Adaptivity and Robustness with Machine Learning *

89 Johan Fredin Haslum Deep Learning for Drug Discovery

93 Johan Wessen Optimization Based Assembly Robot Programming *

97 Jonas Nordlöf Planning for minimum uncertainty

101 Jonas Krook Design and Formal Verification of a Safe Stop Supervisor for an  
Automated Vehicle

109 Jonatan Vallin Analysis of a Deep One Unit Residual Network

113 Jonathan Styrud Learning of control architectures for robot automation

117 Julian Alfredo Mendez Ethical Verification of AI Systems

121 Karl Bengtsson  
Bernander

Robust learning of geometric equivariances

125 Kristoffer Bergman An Optimization-Based Receding Horizon Trajectory Planning Algorithm

129 Lars Svensson Traction Adaptive Motion Planning in Critical Situations

133 Linnea Persson Model predictive control for autonomous landings in a search and rescue  
scenario at sea

137 Magnus Gyllenhammar Models for efficient safety assurance for automated driving system

141 Martin Andersson Optimizing Neural Networks *

145 Matthias Mayr Parameterization of Behavior Trees for Industrial Assembly Tasks through 
Model-Based Reinforcement Learning *
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Uncertainty Estimation

Representation Learning and Visual Localization

Emil Brissman1,2, supervisors Michael Felsberg2 and Per-Erik Forssén2

1Saab Dynamics, 2Computer Vision Laboratory (CVL) Linköping University

Research Goal & Questions

Background & Motivation
Vehicle, autonomous or 
semi-autonomous.

Need vision during 
operation.

Onboard resources, 
limited computational 
power.

Try to avoid data 
overload.

Mimic human visual 
attention.

Choosing salient areas 
from the total visual 
scene.

Methods & Preliminary Results

References
[1] J. Johnander, M. Danelljan, E. Brissman, F. S. Khan, and
M. Felsberg. A generative appearance model for end-to-end
video object segmentation. In The IEEE Conference on Computer Vision and 
Pattern Recognition (CVPR), June 2019.
[2] J. Pont-Tuset, F. Perazzi, S. Caelles, P. Arbelaez, A. Sorkine-Hornung, and L. 
Van Gool. The 2017 davis challenge on video
object segmentation, 2017.
[3] . Gal and Z. Ghahramani. Dropout as a bayesian 
approximation: Representing model uncertainty in deep learning. ICML, 2016.

So far focused on single object 
tracking in the image-plane.

Video Object Segmentation is the 
task of tracking and segmenting 
one or multiple objects.

o Input: image sequence and 
segmentation mask in frame 
#1, t=1

o Output: segmentation masks 
for frames t > 1

o Assumptions: ground truth 
segmentation given in first 
frame (semi-supervised)

Work from other 
perspective.

Learn a motion model 
from data.

Synthetic data.

Network uncertainty 
estimation.

Estimating the predictive 
distribution of projectile 
paths.

Predictive distribution 
estimated with MC-
Dropout [3].

Co-author on AGAME [1], presented at CVPR2019

o The idea is to probabilistically model the feature 
distribution of the object and the background.

o Feature vectors are explicitly classified via the 
probabilistic object model which is updated after 
each frame.

Contour. Image from DAVIS [2].

Multiple Object Segmentation

Develop visual methods 
(CNN) for vehicle 
localization with single 
image input.

What kind of image 
knowledge can be used?

In order to estimate eg. risk 
of collision with other
objects or ego-pose.

For the segmentation task handle multiple objects in a 
single forward pass.

So far focused on single object 
tracking in the image-plane.

Video Object Segmentation is the 
task of tracking and segmenting 
one or multiple objects.

o Input: image sequence and 
segmentation mask in frame 
#1, t=1

o Output: segmentation masks 
for frames t > 1

o Assumptions: ground truth 
segmentation given in first 
frame (semi-supervised)

o Challenge: build an object model from 
the first frame, appearance changes, 
distractor objects (semantically similar).

CNN

Reference frame

Generative Appearance Model: Learning

Reference frame label

Appearance 
Learning

Generative Appearance Model: Classification

Classification

CNN

Test frame
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George Osipov

Constraint satisfaction problems (CSPs) appear in numerous 
domains of computer science: artificial intelligence, machine 
learning, computer vision, computational biology, etc. An 
instance of a CSP consists of a set of variables, a set of values 
that can be assigned to these variables (known as the domain) 
and a set of constraints - logical predicates over variables that 
impose restrictions on the possible assignments of values. To 
solve such a problem, every variable needs to be assigned a 
value so that all the constraints are satisfied.

The framework of constraint satisfaction allows to express 
many different problems. Despite its generality, CSP exhibits 
structural properties that can be exploited to determine its 
complexity. For CSPs over finite domain the recently 
proven dichotomy conjecture [1,2] states that all problems are 
either in P or NP-complete. Moreover, complexity of any 
finite-domain CSP can be checked by investigating the set of 
its solutions and the symmetries of this set. This line of 
research is usually referred to as algebraic approach to CSPs. 

The dichotomy conjecture no longer holds for CSPs over 
infinite domain [3] and algebraic methods do not apply 
directly. Furthermore, problems no longer admit a brute-force 
algorithm that enumerates all solutions, so there is no 
exponential upper bound in the number of variables in general 
case. Only superexponential algorithms are known for some 
CSPs. Improvement is unlikely is some cases based on 
assumptions in computational complexity such as Exponential 
Time Hypothesis [4]. But in other cases, there is a large gap 
between the best known upper and lower bounds. Many 
problems that arise in the context of artificial intelligence 
when spatial and temporal reasoning is involved fall into this 
uncharted area. We are interested in developing mathematical 
tools to investigate them.

Region Connection Calculus (RCC) [5] is designed for 
qualitative spatial reasoning. Here we will concentrate on its 
simplest version - RCC-5. There are 5 basic relations in RCC-5:

Temporal Networks proposed by Dechter et al. [6] are used to 
express temporal constraints. Time points are represented by 
vertices of a graph. Directed edges are labeled with 
intervals and impose the constraint . 
Here is an example of a temporal network:

[1] Bulatov (2017) A dichotomy theorem for nonuniform CSPs.
[2] Zhuk (2017) A proof of CSP dichotomy conjecture.
[3] Jonsson P., Lagerkvist, V., Nordh, G. (2015) Constructing 
NP-intermediate problems by blowing holes with parameters 
of various properties.
[4] Impagliazzo, R., Paturi, R., Zane, F. (2001) Which 
problems have strongly exponential complexity? 
[5] Cohn, A. G., Bennett, B., Gooday, J., Gotts, N. M. (1997) 
Qualitative spatial representation and reasoning with the 
region connection calculus.
[6] Dechter, R., Meiri, I., Pearl, J. (1991). Temporal constraint 
networks.
[7] Bodirsky, M., Jonsson, P. (2017) A model-theoretic view on 
qualitative constraint reasoning. 

A general constraint satisfaction problem for RCC-5 consists of 
a set of variables representing regions and constraints which 
are disjunctions of basic relations. To formalize this problem 
independently of the geometry of regions, one can think of 
variables ranging over subsets of natural numbers and 
relations being the corresponding set operations. Consider an 
example: 

A possible solution here is .

Best known lower bound: 
Best known upper bound: 

Here is the number of variables, is some constant value. 
Notation hides polynomial factors in .
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Y

disjoint
X DR Y

overlap
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part of
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X PPi Y

equal
X EQ Y

Consistency of a temporal network can be checked in 
polynomial time in the size of the graph. However, a more 
general version of the problem which allows for disjunctive 
constraints admits a superexponential lower bound.

Best known lower bound: 
Best known upper bound: 
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1. Particle flow dynamics on graphs: 
multiple phase-transitions

Dynamics: Consider particles flowing on the graph below. From , each particle goes 

in the direction in which the next particle is the furthest distance away.

Parameters: The speeds, , that the particles have on each outgoing edge.

Initial conditions: The distances from to the nearest particle 

in each outgoing edge at time .

Output: The sequence of chosen edges, which will be a cycle.

The parameter space by the different behaviours (left)
Given s, the space of initial conditions by the resulting cycle (right)

These are both highly non-trivial partitions!

Dynamics enhances the 
capacity of  networks

Henrik Ekström | Lund University | Matematisk statistik, Sölvegatan 18, 223 62 Lund | Henrik.Ekstrom@matstat.lu.se

3. Neuronal networks and graphs
The neuronal network in the brain is a directed graph:

Neurons are nodes
Axon-dendrite connections are directed edges between nodes

Neuroscientists are working hard to map these graphs, but what do we want that for? 
We need dynamics on the graph structure in order to understand its function! Models 
exist that generate similar graph structures (see right).

Two simple suggestions:
Cellular automata
otherwise.

Long-term behaviour: all turn off / oscillatory / all (or a subset) turn on
Certain parameters correspond to certain behaviours. 
Phase transitions?

The Hopfield model (above) where only edges present in the graph can have non-
zero weights.

How do these graphs compare with the random model above?
Are they more similar to any found in the dilute model?

Neuronal networks are evolutionarily adapted to perform their function well, so 
finding dynamical models where similar structures arise, and outperform purely 
random variants, can give new insight into that functionality!

Some directions for research to understand the functioning of the brain.

2. The Hopfield model for auto-associative memory
The random model

Structure: A randomly diluted graph with weight , where , i.i.d. 

Parameters: , and the dilution probability.
States: The configuration 
Dynamics: The spin evolution

The fixed points of T correspond to the patterns and are the minima of the Hopfield Hamiltonian

The dilute model
Some (even many) weights can become small and contribute little. Randomly removing weights have 
been shown to preserve pattern retrievability surprisingly well. Better:
Remove the smallest weights!

Study the structure of the remaining graph
Is there a correlation between the data ( ) and the structure?

but few non-zero ?
Can the bounds of random dilution be improved with this method?
We currently study different random structures

(Left) The Hopfield 
model with a noisy input 
and resulting fixed point 
corresponding to a 
learned pattern.

(W.Kinzel)

The goal: relate neuronal networks and (artificial) intelligence

1. Mathematical analysis of dynamics on diluted (random) networks
2. Find correlations between function and structure
3. Derive the structure from empirical results on the brain

A hyperplane of the space of initial conditions for 
parameters that admit three cycles. It is   
partitioned by which cycle ( , or ) the system 
will end up in given that initial condition.

Two simulations and the resulting graphs. 
(Ajazi, Chavez-Demoulin, Turova)

Illustration of a neuronal network.
(Hill, Wang, Riachi, Shürmann, Markam)

The parameter space, partitioned by the cycle(s) 
that the system can end up in given any initial 
condition.

The system in question. All particles 
move with the constant speed shown.

Conclusion: Many different behaviours occur, 
infinitely many as the speed ratios approach 
zero. The dynamics imposed on the structure 
gave it a capacity to encode information. In the 
future we will study cycles and combinations of 
several similar graphs where we expect this 

capacity to increase significantly.
Flow networks are well studied in the 

continuous case, but the discrete case 
carries additional interesting 
complexities of a combinatorial nature 
and deserves further study.



LEARNING DYNAMICAL SYSTEMS
Inês Lourenco

ineslo@kth.se

Description
My research topic is called Learning Dynamical Systems, and this can be applied to a broad area of problems. It provides backbone
algorithms for digitalization of industry and society, such as core technology in autonomous systems with applications like smart
buildings, self-driving vehicles, and self-learning robots.
I am currently looking at a wide range of problems structures related to the estimation of the belief (posterior distribution) of an agent
on the state of the world, and the estimation of its state and sensor properties. The main application we are working with is the inverse
filtering problem for counter-adversarial autonomous (CAA) systems.

Research Goal & QuestionsBackground & Motivation
We consider the problem where an
agent is modeled as a discrete-
time hidden Markov model (HMM).
At each time step, this agent:

is in a state of the world x(k),
receives an observation y(k)
from which it updates its
posterior distribution (k) (belief
over the states of the world),
and based on which it performs
action a(k).

Methods & Preliminary Results Roadmap & Milestones
In [2] we show that we can
obtain a set of beliefs (k),
consistent with the actions a(k)
performed by the agent, as
shown in blue in the figure on
the left.

The goal is to later apply these inverse problems in an
inverse Reinforcement Learning setup.

For example, if we have a neuroscientific theory, such as how
temporal perception is coded in the brain, how can we test it
in robots? By observing the actions, can we infer its
belief (k) on the state of the world?

References
[1] R l 

4216, 2017.
[ sed on 

528, July 2019.

In a future paper we will show that we can
get a better estimate of the set (k) by using
a smoother for the inverse filter (figure on
the right).

Our goal is to, based on our knowledge of the state of the world
and the actions done by the agent, learn its internal variables such
as the set information it has, and its posterior distribution and state.
This setting is related to inverse filtering and is important for
applications such as
and .

In [1], Mattila et al. showed that from
the posterior (k) we can get an
estimate of the sensors and
the state x(k).

But do we have access to (k)? !

So, given the state sequence
x(0), ,x(k) and actions a(1), ,a(k),
how to estimate the
beliefs 1),



Experimental Results

Sparse2Dense: From direct sparse odometry 
to dense 3D reconstruction

1KTH Royal Institute of Technology

Division of Robotics, Perception and Learning

Jiexiong Tang1, John Folkesson1 and Patric Jensfelt1

This work was partially supported by the Wallenberg AI, Autonomous Systems 
and Software Program (WASP) and the SSF project FACT.

RA-L

Introduction
In this paper, we proposed a new deep learning based dense monocular
SLAM method. The proposed framework constructs a dense 3D model
via a sparse to dense mapping using learned surface normals. With
single view learned depth estimation as prior for monocular visual
odometry, we obtain both accurate positioning and high quality depth
reconstruction.

Coupled Depth/Normal Estimation

Input

System Overview

Absolute Trajectory Error

Percentage of Correct Depth

Quantitative Qualitative



Deep Learning for Drug Discovery
Johan Fredin Haslum

Description:
Developing new drugs is a long and costly process, both in terms of time and resources. Early stages of the process include High
Throughput Screenings (HTS) which involves investigating the effect of applying a compound to a cell line and observing the
response. Predicting the outcome of such experiments could speed-up the drug discovery process and provide new insight into the
underlying biological processes. To achieve this, experimental data from previous HTS is repurposed and used to train Deep Learning
models to predict drug activity over a number of different cell lines and targets.

Research Goal & QuestionsBackground & Motivation

Once a target that regulates a
certain disease has been
identified a compound that has an
effect on the target is of interest.
Finding such a compound often
involves screening thousands of
compounds. What if instead of
screening thousands compounds
we only screen the hundred that
are most likely to have an effect
based on or predictive model?

Methods & Preliminary Results

Combining multiple data sources

Roadmap & Milestones

The dataset used in this project
were not produced with machine
learning in mind and presents a
number of challenges.

Sparse
Diverse Origin
Diverse Datatypes
Dataset Size

Using florescent microscopy
images of thousands of
compounds applied to a certain
cell line, combined with activity
data for the same compounds
but different cell lines one can
build a Deep Learning models
capable of predicting drug
activity. The approach is similar
to a supervised learning binary
classification task and has been
shown to yield actionable results
by other research groups which
we have reproduced

Developing Semi-Supervised 
Learning approaches to 
improve current prediction 
power with sparse labels
Exploring Multi-Modal Deep
Learning approaches to draw
information from diverse data 
sources
Utilizing Explainable AI 
methods to find biological 
insights and relations found 
by the Deep Learning models

The goal of this project is to develop Deep Learning methods
capable of performing well when applied to datasets exhibiting the
challenges presented above.

Academic Advisors
Kevin Smith
Hossein Azizpour

Industrial Supervisors
Erik Müllers
Johan Karlson
Karl-Johan Leuchowius



Planning for minimum 
uncertainty
Jonas Nordlöf (LiU/FOI) jonas.nordlof@foi.se
Supervisor: Daniel Axehill (LiU)
Co-supervisor: Gustaf Hendeby (LiU), Jonas Nygårds (FOI)

Abstract
By planning for minimum uncertainty, it is possible to improve the positioning 
accuracy of an autonomous system in difficult and GNSS-degraded environments. 
The project aims at incorporating information regarding landmark densities, as well 
as terrain properties, in order to plan a path that minimises the expected 
positioning uncertainty. 

Machine learning (ML) will be studied for the purpose of estimating landmark 
densities based on ordinary maps. The project intends to evaluate the proposed 
approach on an autonomous system together with the Swedish Defence Research 
Agency (FOI) in Linköping.  

LINKÖPING UNIVERSITY
AUTOMATIC CONTROL (ISY)

Background
Traditional planning assumes a low and uniform 
uncertainty in the position estimate throughout 
the planning space. This assumption is not 
always true due to, e.g.:

obstruction of sensor measurements;
GNSS-degradation;
lack of recognizable and static features; and
uneven, unstable, or even moving ground 
surfaces.

All of these factors need to be considered to 
assure mission success in real-world scenarios.
Solving this problem is often referred to as 
informative path planning (IPP).

Key concepts
No assumption of known landmarks are 
made.
Expected information gain is maximized 
given knowledge of landmark densities.
Aims at using ML for identifying beneficial 
vantage points during planning.
Utilize ML for estimating landmark densities 
from pre-existing maps and sensor data.
Incorporate negative information.

Evaluation
To evaluate the performance of the developed 
methods in realistic scenarios, and to visualize 
the technology to different stakeholders, a proof-
of-concept platform will be developed based 
upon a pre-existing positioning system. 

Collaboration
The project is being funded by the division of 
C4ISR within the Swedish Defence Research 
Agency (FOI). The project will follow the 
Swedish armed forces Research and Tech 
(R&T) program for the area of autonomous 
systems and the area of sensors and signature 
management, which includes research on 
autonomous localization using sensor data. 
These R&T programs provide a wide set of 
international cooperation's through, among 
others, EU, EDA and NATO that will be utilized 
through out the project.

Project goals
The main objectives of the project is to:

jointly solve the task of state-estimation and 
action planning to predict positioning 
uncertainty;
be able to plan the execution of a task in 
unstructured environments; and
be able to model the effects of terrain 
properties on the motion of the system.

Figure 1: Sensor platform for data collection and 
real-time execution of positioning algorithms. 

Figure 2: Planned path based on landmark densities plotted with an estimated trajectory with sampled landmarks. The dark green area has a lower 
landmark density, the algorithm therefore avoids the area and finds a path through the bright green area which has a higher landmark density. The 
realizations of the different paths are created by sampling landmarks from the densities and letting a simulated self-positioning autonomous system 
move along the path.

Preliminary results
Currently, the project has:

developed theory to use virtual landmarks to 
describe the information potential in unseen 
areas;
developed an algorithm which calculates an 
approximate solution to the IPP problem; and
validated the IPP solution in a simulated 
environment.





Analysis of a deep one unit residual network

Network Architecture

Properties of the mapping

Localizing structures

Classification problems



Cognitive Predictors of Student Success:
A Predictive Validity Comparison Between Domestic and International Students

Learning of control 
architectures for robot 
automation
PRESENTER: Jonathan Styrud

Non-Cognitive Predictors of Student Success:
A Predictive Validity Comparison Between Domestic and International Students

The main obstacle holding robots 

back is the effort needed for task 

programming. When the program is 

generated automatically, robot 

automation will be affordable for all.

INTRO
The main obstacle holding robots back 
is the effort needed for task 
programming. When the program is 
generated automatically with show 
and tell like programming, robot 
automation will be affordable for all.
This project will investigate methods 
for collaborative robots to 
autonomously learn control 
architectures such as behavior trees.

FULL PROJECT TITLE
Autonomous learning of control 
architectures for real-time industrial 
robot automation in a dynamic 
environment

METHODOLOGY
Restrict scope. Assume vision and 
grasping is solved, assume HMI 
interface exists, assume basic skills are 
in place, restrict to point-to-point 
manipulation etc.
Use simulation, real world trials are 
too expensive.
Select control architecture that is 
modular and transparent, such as 
behavior trees. -
to-torque.
Start small and simple, and later 
expand with more complex tasks.

RESULTS
Nothing to report so far!

Behavior tree example:

Overall picture:

Automatic planning is not 
feasible because it typically 
assumes:

Perfect prediction of the 
effect of various actions
Perfect knowledge of the 
system state
Small upper bounds on 
complexity of the assembly 
tree

Take a picture for 
contact details
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Robust learning of geometric equivariances
Karl Bengtsson Bernander, Joakim Lindblad, Nataša Sladoje

Centre for Image Analysis, Department of Information Technology, Uppsala University, Sweden

Introd
uktio

n
We plan to apply promising methods to our own dataset,
consisting of microscopy images of cells from the oral cavity.
They are weakly labelled with cancer or no cancer.

The usage of rotation equivariant CNNs should increase
accuracy by avoiding interpolation artifacts caused by data
augmentation. We will also compare equivariances versus
invariances, depending on texture and local shapes.

We are also interested in studying
equivalence. Meaning, for different
neural networks, we want
to compare similarities in
captured information content -
that is, if there exists
some map between them [2].

Microscopy image of cells
from the oral cavity

We extend convolutional neural networks (CNNs) as to provide rotation equivariance. We evaluate several methods that
incorporates this property into the network architectures. We start by replicating and evaluating these methods on existing
datasets. Our plan is to apply promising methods to our own dataset consisting of microscopy images of cells, weakly labelled as
cancer or no cancer. We expect that incorporating rotation equivariance into CNNs will increase the expressive capacity without
increasing the number of parameters, reducing overfitting. Also, since data augmentation can be reduced, misclassification due
to interpolation artifacts should decrease.

Abstract

Existing work

Further directions

Robust learning of geometric

One feature of standard convolutional neural networks (CNNs) is translational invariance: the result of convolving an input with a filter 
and then shifting the output is identical to shifting the input and then applying the convolution. We are interested in other
equivariances, such as rotations and scaling. Recent works on rotation equivariance in CNNs include:

• Group-equivariant convolutional networks (G-CNNs) [3], using 
group-convolutions.

• Steerable filters [4], using linear combinations of a system of atomic filters 
to achieve arbitrary angular resolution w.r.t the sampled filter orientations.

• CFNet [1], using various filters at rotations in corresponding conic regions.

• Warped convolutions [5], transforming the image to the log-polar domain.

Microscopy images of cells in the oral cavity

Different convolution schemes [1]
Rotational equivariance: filtering (Φ) an input f, then rotating (Tg), gives the 

same result as filtering on the rotated input.

1. Benjamin Chidester, Tianming Zhou, Minh N Do, Jian Ma. Rotation equivariant and invariant neural networks for microscopy image analysis. Bioinformatics, Volume 35, Issue 14, July 2019
2. Kaerl Lenc, Andrea Vivaldi. Understanding Image Representations by Measuring Their Equivariance and Equivalence. International  Journal of Computer Vision, Volume 127, Issue 5, May 2019
3. T.S. Cohen, M. Welling. Group Equivariant Convolutional Networks. Proceedings of the International Conference on Machine Learning (ICML), 2016 
4. Weiler, Maurice, Hamprecht, Fred, Storath, Martin. Learning Steerable Filters for Rotation Equivariant CNNs. Proceedings of the Conference on Computer Vision and Pattern Recognition, 2018
5.     Henriques J.F, Vedaldi A. Warped convolutions: efficient invariance to spatial transformations. Proceedings of the International conference on Machine Learning, 2017

References

We have begun the empirical part of the project by replicating some of the 
most promising methods for achieving rotational equivariance for CNNs 
[1], [3], [4]. As a reference point, we focus on the rotated MNIST dataset.

Classification accuracy on rotated MNIST for different CNN architectures

Samples from the rotated MNIST dataset

Method Test error (%)

Standard CNN 5.03

G-CNN 2.28

CFNet 1.75

Steerable filters 0.71

Experiments and replications
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Problem considered: Trajectory planning for nonlinear systems
in unstructured environments.
Method: Combine a sampling-based motion planner and a receding
horizon optimzation algorithm.
Drawback of state-of-the art: Does not guarantee feasibility be-
yond the planning horizon (recursive feasibility).
Main contribution: Use the solution from a feasible motion plan-
ner as terminal manifold to provide theoretical guarantees on feasi-
bility during the entire planning horizon.

Nominal Optimized Remaining

x(tk)

xf

obstacle

Planning horizon

Trajectory planning is an optimal control problem (OCP):

minimize
u(·), tf

Jtot(x0,u(·)) =
∫ tf

t0

�(x(t),u(t))dt

subject to x(t0) = x0, x(tf) = xf,

ẋ(t) = f (x(t),u(t)),

x(t) ∈ Xfree, u(t) ∈ U t ∈ [t0, tf ].

(1)

• Computationally expensive to solve (or improve nominal solutions)
for long horizon problems

• Idea: use receding horizon planning (RHP)

• Relies on a feasible nominal trajectory (x̄(·), ū(·), t̄f)
computed by a motion planning algorithm

– Used computationally to warm-start the RHP-step
– Used theoretically for convergence guarantees

• Introduce timing variable τk and cost-to-go function Ψk(τk)

minimize
uk(·), τk

J(xcur,uk(·), τk) = Ψk(τk) +

∫ tk+T

tk

�(xk(t),uk(t))dt

subject to xk(tk) = xcur, xk(tk + T ) = x̄k−1(τk)

ẋk(t) = f (xk(t),uk(t)),

xk(t) ∈ Xfree, t ∈ [tk, tk + T ]

uk(t) ∈ U .

(2)

• Uses previous solution x̄k−1(·) as “anchor” or terminal manifold

• Theoretical guarantees:

1. Recursive feasibility
2. Non-increasing objective function value Jtot(x0,uk(·))
3. Finite number of RHP iterations → convergence to xf

• Practical issue: want to use piecewise continuous control inputs

• Nominal solution x̄(·) and cost-to-go functionΨk(·)not continuously
differentiable→ (2) can not be solved using standard OCP interfaces

• Introducing minor adjustment to (2) such that standard direct
optimal control methods can be used

• Theoretical guarantees still hold using this adjustment

This work was partially supported by FFI/VINNOVA and the Wallen-
berg AI, Autonomous Systems and Software Program (WASP) funded
by the Knut and Alice Wallenberg Foundation.

• A truck and trailer system in confined environments.

• A lattice-based motion planner used to compute nominal solutions.

• Compare performance using different planning horizons T .

Nominal Full Horizon (FH) T = 60 s

x0

• ΔJtot : Difference in objective function value.

• t̄RHP : Computation time per RHP iteration.

• Δt̄lat : Difference in latency time (i.e first RHP iteration)

• Δt̄tot: Difference in total time (execution time + computation time)
T [s] 20 40 60 80 120 Full horizon

ΔJtot [%] −24.9 −35.2 −40.8 −41.7 −43.4 −43.7

t̄RHP [s] 0.09 0.29 0.77 2.0 10.4 17.0

Δt̄lat [s] 0.35 0.73 2.0 3.5 12.3 17.0

Δt̄tot [s] −32.6 −45.7 −53.7 −54.0 −45.9 −44.1
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• A new two-step trajectory planning algorithm introduced.

• Allows for trade-off between latency against solution quality.

• Nominal trajectory exploited for feasibility and convergence guar-
antees.

• Future work: Dynamic scenarios with online re-planning.

Manuscript available online at:

WALLENBERG AI, 
AUTONOMOUS SYSTEMS
AND SOFTWARE PROGRAM



Traction Adaptive Motion 
Planning in Critical Situations

Lars Svensson, KTH

Problem Formulation
As deployment of automated vehicles increases, so does the rate at which 
they are exposed to critical traffic situations. Such situations, e.g. a late 
detected pedestrian in the vehicle path, require operation at the handling 
limits in order to maximize the capacity to avoid an accident. Furthermore, the 
physical limitations of the vehicle typically vary in time due to local road and 
weather conditions. In this research project, we tackle the problem of motion 
planning and control at the limits of handling under time varying constraints, 
by adapting to local traction limitations. Details are provided in [1]. 

Proposed Method

Conclusions and Future Work

In order to capture the effects of 
bounded tire forces, we use a 
dynamic vehicle model:

Where the states propagate as:

with lateral and longitudinal tire forces 
as inputs. We model the locally 
varying traction limit as a time varying 
input constraint determined by

Where varies according to the pitch 
dynamics. 

and is identified online. 

Our results indicate that the concept of traction adaptation in motion 
planning:
• Increases the capacity to avoid accidents when adapting to both 

deteriorated and improved traction
The proposed method - Sampling Augmented Adaptive RTI
• Enables optimality w.r.t time varying input constraints
• Reduces sensitivity to bad local minima

Next steps in this research project include full scale vehicle experiments 
and integration of online tire-road friction estimation. 

Results and Discussion
First, we compare traction adaptive 
trajectory planning with non-adaptive 
for an obstacle avoidance scenario. 
We make two observations: 
1. When adapting to reduced traction, 
we observe improved control, 
because adapting avoids planning 
dynamically infeasible maneuvers
2. When adapting to improved 
traction, we observe a lower closed 
loop cost, because adapting enables 
full utilization of the available traction. 

Third, we compare SAA-RTI similar 
methods, namely standard RTI-SQP 
[2] and state space sampling [3] (with 
MPC tracking). SAA-RTI represents 
an improvement in terms of optimality 
w.r.t physical capabilities and in terms 
of capacity to avoid local minima.
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Here is an example of how the 
horizontal force limits vary in different 
conditions. 

We introduce the time varying tire 
force bounds as a time varying 
constraint in the optimization (1). 

This introduces further challenges in 
solving (1) in real time, which we 
address by augmenting RTI-SQP [2] 
with a trajectory rollout method [3]. 
The algorithm is summarized as

and further elaborated in [1].

Closed loop trajectories for comparison between 
adaptive and non-adaptive trajectory planning and 
control. The vehicle is depicted in gray, a suddenly 
appearing obstacle in red. In the force plot to the right, 
blue crosses denote the commanded tire forces and 
magenta circles denote actual tire forces. The solid and 
dashed black lines represent the actual and assumed 
friction boundary respectively.

Comparison of closed loop trajectories between SAA-
RTI (blue) and state space sampling with MPC tracking 
(orange)

Example of how SAA-RTI avoids local minima. Orange: 
converged SQP solution initialized left of obstacle. Blue: 
converged SQP solution initialized right of obstacle. 
Gray: Closed loop trajectory of the vehicle controlled by 
SAA-RTI 

Results from Monte Carlo simulation of the critical obstacle 
avoidance scenario 1200 runs, with varied obstacle position, 
initial velocity and road geometry. denotes the average 
closed loop cost and the empirical accident probability 
over all runs. 

Second, we generalize the results by 
means of Monte Carlo simulation. 
Results indicate that adaptation 
improves the vehicle’s capacity to 
avoid accidents both at reduced and 
improved traction.

Real world example of the motion planning problem 
in a critical situation 

The corresponding optimal control problem. In our approach, 
locally varying traction information enter as time varying 
constraints

(1)

https://en.wikipedia.org/wiki/Death_of_Elaine_Herzberg








