Secure, Private, and Low-Latency Cloud Connectivity for IoT Applications

Giuseppe Durisi, Katarina Mitrokotsa

Chalmers, Sweden

January, 2020

Wireless-enabled IoT devices

Key enabler of future autonomous systems

source: IoTpool

- 5G \Rightarrow massive MTC; ultra-reliable, low-latency comm.
- Low-power wireless-area networks ⇔ LoRa-WAN, SigFox,...

How optimal are existing solutions? How to optimally design IoT systems?

Durisi & Mitrokotsa

Communication perspective

- key challenge: how to transmit short data packets in an energy-efficiency way
- tool: information and communication theory

Communication perspective

- key challenge: how to transmit short data packets in an energy-efficiency way
- tool: information and communication theory

Computation perspective

- key challenge: how to maintain security and privacy while delegating computation to a cloud/edge server
- tool: cryptography

Communication perspective

- key challenge: how to transmit short data packets in an energy-efficiency way
- tool: information and communication theory [Giuseppe Durisi]

This project

Computation perspective

- key challenge: how to maintain security and privacy while delegating computation to a cloud/edge server
- tool: cryptography [Katerina Mitrokotsa]

Aim of the project

- massive number of clients
- computation assisted by multiple servers
- latency constraint
- security and privacy constraints

What is the maximum energy efficiency achievable at the client side?

Communication: Transmitting efficiently small packets

- Information payload is often small (≈ 100 bits)
- Energy consumption dominated by wireless transmission
- Minimum energy efficiency well-understood in the point-to-point case ⇒ Finite-blocklength information theory

Energy efficiency in massive IoT deployments

- Massive number of sporadically active sensors
- Coordinated transmission inefficient from an energy perspective
- Uncoordinated access ⇒ Classical information-theoretic results are not applicable

Information theory for massive uncoordinated multiple access

- very active area of research
- "... Supporting 10 users at 1 Mbit/s is much easier than supporting 1 million users at 10 bit/s..." [*Polyanskiy, 2019*]

Computation perspective: Security and privacy

- Computation on data from multiple clients
- Servers are not necessarily trustworthy
- Clients want to verify correctness of computation
- Clients have privacy requirements

Solutions

- Multi-client extension to verifiable delegation of computation protocols
- Verifiable homomorphic secret sharing

Status of the project

- Project started in October 2019
- Two postdoctoral researchers hired: Alejandro Lancho and Gustavo Souza Banegas
- Interest from industry!
- Focus of current investigations:
 - impact of protocols overhead on energy efficiency
 - scalability with number of clients
 - requirements on physical layer reliability
 - compatibility with uncoordinated access